

A3PS | Eco-Mobility 2025 DI (FH) Christoph Kiegerl 13.11.2025

Liebherr-Werk Bischofshofen GmbH

1 Company introduction

Liebherr is a family-owned business in 3rd generation:

Group overview

1949

Founded by Hans Liebherr in Kirchdorf an der Iller, Germany

Parent company Liebherr-International AG based in Bulle, Switzerland

Liebherr is a family-run technology company

Product segments

12.589

51.321

Turnover in € mio

Employees

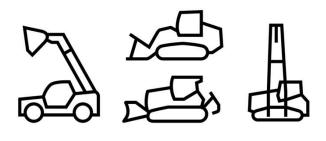
Production sites

>140

Companies

https://www.liebherr.com/shared/media/annual-report/annual-report-2022/pdf/facts-and-figures-2022.pdf

Earthmoving machinery R+D centres and production plants


Liebherr-Hydraulikbagger GmbH

Kirchdorf an der Iller (GER) | since 1949

Liebherr-Werk Bischofshofen GmbH

Bischofshofen (AUT) | since 1960

Liebherr-Werk Telfs GmbH

Telfs (AUT) | since 1976

Liebherr-France SAS

Colmar (FRA) | since 1961

Liebherr-Werk Bischofshofen GmbH

Liebherr Machinery (Dalian) Co., Ltd.

Dalian (CHN) I since 2002

Construction machines for all divisions

Liebherr-Brasil Eireli

Guaratinguetá (BRA) | since 1974

2 Wheel loader product portfolio

Liebherr's XPower® large-size wheel loaders have lowest fuel consumption in class:

Product range

Wheel Loader							
		L 504 Compact	L 506 Compact	L 507 Stereo	L 508 Compact	L 509 Stereo	L 514 Stereo
Tipping load	kg	3,000	3,500	3,750	3,900	4,430	5,750
Bucket capacity	m³	0.7	0.8	0.9	1.0	1.2	1.5
Operating weight	kg	4,600	4,970	5,550	5,700	6,390	8,860
Engine output	kW/HP	34/46	47,5/64	50/68	47,5/64	54/73	76/103
				Small-size			
Wheel Loader							
		L 518 Stereo	L 526	L 53	38	L 546	L 550 XPower®
Tipping load	kg	6,550	8,730	9,6	50	11,010	12,500
Bucket capacity	m³	1.7	2.2	2.0		3.0	3.4
Operating weight	kg	9,190	13,170	14,5		15,410	18,550
Engine output	kW/HP	76/103	116/158	129/	175	138/188	163/222
		Small-size		Mid-	size		Large-size
Wheel Loader							
		L 556 XPower®	L 566 XPower	[®] L 576 XF	Power®	L 580 XPower®	L 586 XPower®
Tipping load	kg	13,750	15,900	17,6	500	19,200	21,600
Bucket capacity	m³	3.7	4.2	4.	7	5.2	6.0
Operating weight	kg	19,600	23,900	25,7		27,650	32,600
Engine output	kW/HP	183/249	203/276	218/	296	233/317	263/358

Large-size

XPower®

Decarbonization & examples

L 504 Compact

3,000

4.600

34/46

L 518 Stereo

6,550

1.7 9.190

76/103

L 556 XPower®

13.750

3.7 19,600

183/249

Small-size

Wheel Loader

Tipping load	kg
Bucket capacity	m³
Operating weight	kg
Engine output	kW/HP

Wheel Loader

Tipping load	kg
Bucket capacity	m ³
Operating weight	kg
Engine output	kW/HP

Wheel Loader

Tipping load	kg
Bucket capacity	m ³
Operating weight	kg
Engine output	kW/HP

- Battery-electric, 350 V

1.0

L 576 XPower®

L 507 E 🛢

L 507 Stereo

L 506 Compact

3,500

0.8

4.970

47,5/64

L 526 8,730

2.2

13,170

116/158

L 566 XPower®

Concept to be scaled to smaller & larger machines

L 507 FC, demonstrator, 2022

Fuel cell, first Liebherr developed hydrogen machine

Technology not yet ready for hard non-road usage

5,700	0,370	0,000
47,5/64	773	76/103
ize		
I al		

4 700

L 546 E, demonstrator, 2025

Battery-electric, 825 V

Innovative high-voltage drive platform concept

1.5

L 566 H, field test machine, 2025

H2-ICE for 1st hydrogen machine generation

Customer field test already ongoing

L 580 XPower®

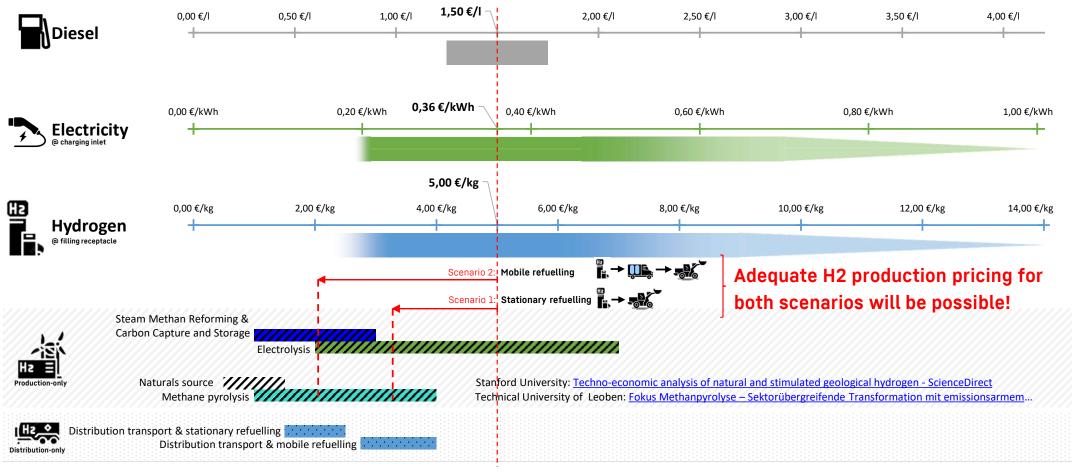
10...400 kWh

Battery-electric

13.11.2025 Liebherr-Werk Bischofshofen Gmpm

Decarbonization at Liebherr

- Top level goal: Reducing CO2 emissions
- Strong willingness from the owner family to develop zero-emission vehicle (ZEV) technology.
- Large companies ask for zero-emission solutions as a part of their decarbonization strategies.
 - Already required in several European countries for public construction projects.
- Strengthen Liebherr's role as European manufacturer on the global market.
- Securing European value creation for the future with hydrogen propulsion technology:
 - H2-ICE in the beginning.
 - Fuel cells will follow.
 - Only possible with energy prices in line with the market: How does this work with hydrogen?


3 Hydrogen pricing scenarios

Note:

- Energy price studies are carried out by Liebherr with great care.
- Energy prices to be shown apply at the machine's refueling inlet / charging inlet.
- Differences in mechanical/electrical efficiency are taken into account.
- Additional CAPEX for ZEV is not considered when comparing to Diesel.
- Funding and other benefits (e. g. RED III) are not taken into account.
- Shown energy prices for ZEV do not include a future substitute for mineral oil tax.

Comparison Diesel - Electricity - Hydrogen (AT)

Learnings and interpretation at a glance

- (1) Future H2 price will be able to go hand in hand with battery-electric technology in the future.
- (2) Making use of the well-known benefits such as outstanding autonomy, fast refueling and mobile refueling when electric grid is not present.
- (3) Hydrogen propulsion technology must be understood as a major chance to maintain the European industry's sustainability, competitiveness and resilience.

Needs:

- Efforts necessary to ensure that hydrogen technologies for mobility (fuel cells, H2-ICE) are **not relegated to a niche market**.
- A **robust framework is needed to enable the ramp-up** of H2 vehicle technologies incl. grey and blue H2 in the beginning.
- Major component is the implementation of the public H2 refueling infrastructure (AFIR).
- It is now up to society and politics to recognize this opportunities and create an appropriate framework before the Far East takes over the leadership of H2 technology, too.

13.11.2025

Call for action placed to the European Commission in June 2025

https://globalh2mobilityalliance.org/wp-content/uploads/2025/07/GHMA CEO-Letter EU FINAL.pdf


4 Related projects

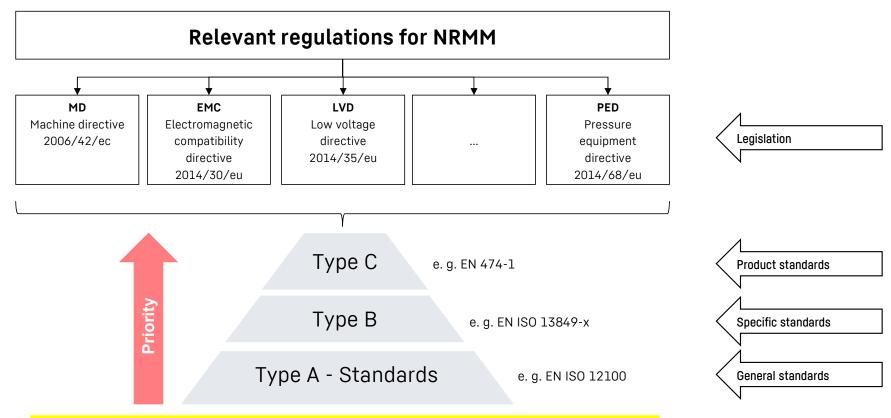
- Highly-mobile fast-refueling
- Modification of fuel cell technology for non-road application
- Regulatory compliance & certification

Related activities in the field of hydrogen machinery development

- Development of an on-site refuelling equipment with strong partners
 - Highly mobile device
 - 700 bar pressure level
 - Fast refueling in 10 to 12 minutes
 - Scalable fuelling for small to very large machines
 - Low additional costs for on-site H2 refueling

- Based on the 2nd generation of on-road truck fuel cell technology
- Robust against shocks & vibrations, dust and aggressive gases
- Capable for large terrain inclinations

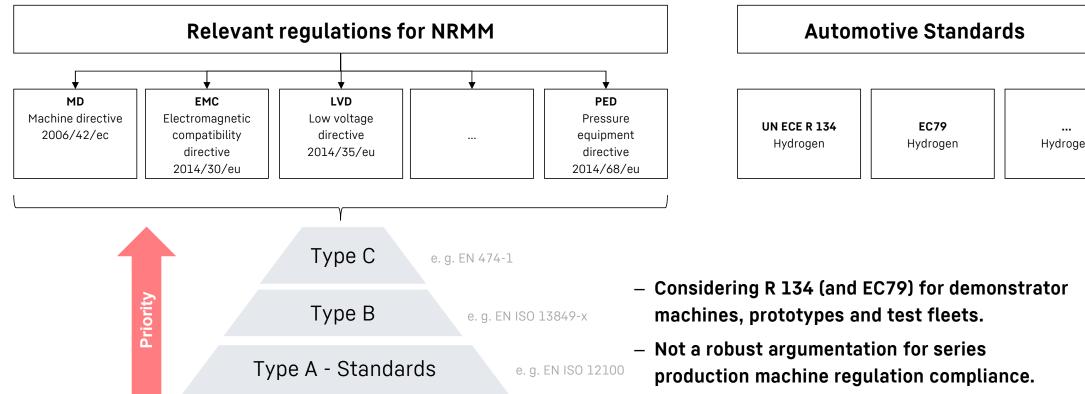
- Hydrogen non-road machinery
- Mobile fast-refuelling equipment



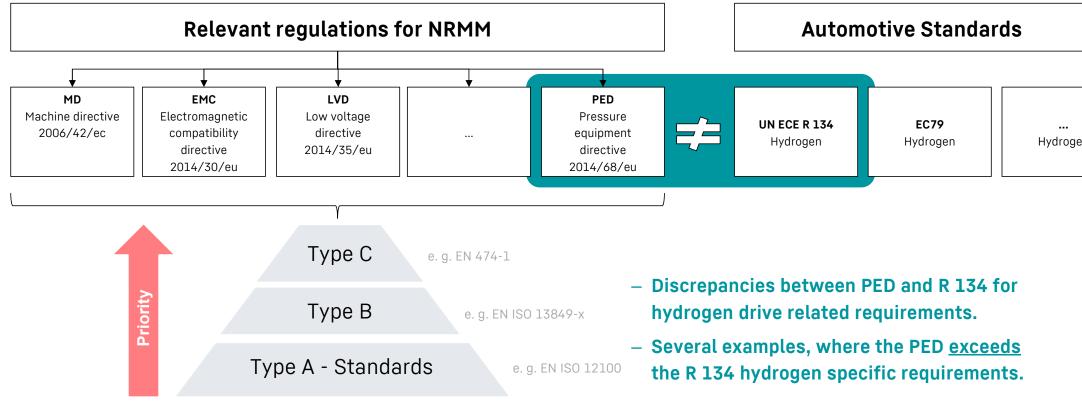
4 Regulations & Compliance

– Focus on Non-Road Mobile Machinery (NRMM):

Regulations for NRMM in Europe


Problem: Standards available do not practically cover hydrogen

technology and components so far for NRMM!
Liebherr-Werk Bischofshofen GmbH


Regulations for NRMM in Europe

Regulations for NRMM in Europe

IEA Technical Cooperation Partnership (TCP)

- Development of a technical argumentation which will express that the basic safety principles can be implemented by applying automotive standards, so that the **CE labelling regulations will be met**.
- This will allow making use of components with Automotive origin also in Non-Road machines.
- Approach: Industry supported White Papers close to a future ISO standard project for H2 construction machinery.
- Activities are organized as part of a research co-operation supported by the International Energy Agency (IEA).
- The contribution of further participants and supporters is welcome.

https://nachhaltigwirtschaften.at/de/iea/technologieprogramme/amf/iea-amf-task-65 https://iea-amf.org/content/projects/map projects/65/

Federal Ministry Innovation, Mobility and Infrastructure Republic of Austria

L 566 H: November 2025 milestone

- Long-term customer field test started on 3 November in a large quarry in the north of Graz.
- Goal: 50 hours per week over several years.
- 700 bar hydrogen filling station was installed by Strabag.
- Green hydrogen is supplied by local energy supplier
 Energie Steiermark produced at its Gabersdorf placed plant.
- Additional test machines will follow in the next months in Austria and Germany.

COMPANY NEWS

Decarbonization of the construction industry: Hydrogen wheel loader starts practical test

3 November 2025

- Hydrogen-powered wheel loader to deliver key insights for the sustainable operation of large construction machinery
- Green drivetrain technologies are a central lever in the company's decarbonisation strategy

A hydrogen-powered wheel loader from Liebherr has now gone into operation at the Kanzelstein quarry in Gratkorn. STRABAG will be testing the new machine intensively over a two-year period, running it at least 50 hours per week. Fuels represent STRABAG's largest source of CO₂ emissions – around 40 percent of total Group emissions are attributable to the diesel consumption of its construction machinery, commercial vehicles and passenger cars.

LIEBHERR

