

advancing user acceptance of general purpose hybridized vehicles by improved cost and efficiency

Call identifier: H2020-GV-03-2016 Grant agrrement number: 724095 Bernhard Brandstätter Virtual Vehicle

Participant organisation name	Participant short name	Country
VOLVO PERSONVAGNAR AB (Coordinator)	VCC	Sweden
Kompetenzzentrum - Das Virtuelle Fahrzeug,	VIF	Austria
Forschungsgesellschaft mbH		
Alma Automotive srl	ALMA	Italy
AVL List GmbH	AVL	Austria
CENTRO RICERCHE FIAT SCPA	CRF	Italy
CESKE VYSOKE UCENI TECHNICKE V PRAZE	CTU	Czech
		Republic
FEV GmbH	FEV	Germany
FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER	IMS	
ANGEWANDTEN FORSCHUNG EV		Germany
GKN DRIVELINE ZUMAIA SA	GKN	Spain
GENERAL MOTORS POWERTRAIN - EUROPE SRL	GM	Italy
IDEAS & MOTION SRL	I&M	Italy
IDIADA AUTOMOTIVE TECHNOLOGY SA	IDIADA	Spain
IESTA - Institut für Innovative Energie- & Stoffaustauschsysteme	IESTA	Austria
IFP Energies Nouvelles	IFPEN	France
INFINEON TECHNOLOGIES AG	IFAG	Germany
SIEMENS INDUSTRY SOFTWARE SAS	SIE	France
FUNDACION TECNALIA RESEARCH & INNOVATION	TEC	Spain
UNIVERSITY OF SURREY	USR	UK
VALEO SYSTEMES DE CONTROLE MOTEUR SAS	VALEO	France
RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE	IKA	Germany
AACHEN		
AVL Schrick GmbH	AVL-S	Germany

Project Start: April 1st 2017 Duration 36 months

Budget	
Total Costs:	12, 694.011 €
Grant Amount:	9.900.500 €

- ✓ Objective 1: Cost premium of 5% for mild and full hybrid and 15% for P-HEV compared to best in class non-hybrid diesel vehicles available on the market.
- ✓ Objective 2: Reduction of fuel consumption on WLTP cycle by 20% and 25% increase in electric driving range for P-HEV, respectively.
- Objective 3: Demonstrating the vehicles' noxious emissions RDE compliance with a 1.5 compliance factor.
- ✓ Objective 4: Improvement of vehicle performance according to proper performance index and the objective assessment of driveability.
- Objective 5: Verification and assessment along 3 vehicle classes and 3 hybrid vehicle architectures.

IMPACT

advancing user acceptance of general purpose hybridized vehicles by improved cost and efficiency

COST

	Premium to Diesel	Premium to Diesel after ADVICE
PHEV	75%	22% -7% long-term
HEV	30%	5%
Mild-hybrid	10%	-11%

Efficiency

Emissions

measure	Impact on efficiency				
E-Turbo + ICE downsizing	20%				
Advanced control + Eco Routing/Driving	10-15%				
Optimal torque split	3%				
Comprehensive energy management	1-2%				
measures					
Simplification + downsizing of engines					
Battery high energy/high power					
Advanced control, ECO-Routing					
Electrically heated catalyst					

Battery achievements @ V1

V1 - Gasoline HV Full HEV (Volvo Cars)

ADVICE

- investigating a battery solution for V2 vehicle demonstrator, consisting of high energy modules and high power modules.
- scouting, supply and test bench measurement of post **Li-ion lithium-sulfur and solid-state** technology cells.
- Commercially available post Li-ion cells did not yet meet energy density levels reported in literature. Cycle life stability for lithium-sulfur was poor, but good for solid-state cells.
- Current **NMC-Graphite cell** technology will probably prevail in the foreseeable future.

• OBJECTIVES:

٠

- Alternative identification and benchmarking of possible architectures for e-4WD solution.
- Virtual integration of E/E components (mainly ECUs) for simulation, test and validation

Name	Topology
Sys Arch 0	Base Line. Alfa Rome Giulia Architecture.
Sys Arch 1	Hybrid ZF 8 speed gearbox 4WD automatic.
Sys Arch 2	Front eTwinster axle capabilities and Torque Vectoring.
Sys Arch 3	Front eAxle dual motors with epycicloidal gears.
Svs Arch 4	Front axle with differential and eMotor longitudinal.

Weight Suggestion	20	10	15	15	10	15	15	
System Architecture	Efficiency	Performance	Handling	EV Mode	Cost	Weight	Integration	Score
0	2	3	2	2	4	4	4	270
1	3	4	2	3	4	3	4	320
2	4	4	4	4	2	3	4	360
3	4	4	4	4	2	4	2	350
4	3	4	3	4	3	3	3	325

Longitudinal Test

Lateral Test

Efficiency Test

Integration and Test rig validation.

advancing user acceptance of general purpose hybridized vehicles by improved cost and efficiency

 Integration study of the solution and Testing in operational environment: GKN's test rig with I&M and GKN HW.

Torque Split

Torque Vectoring

Brake Blending

- Results
 - Lateral acceleration improvement due to torque vectoring algorithms.
 - Longitudinal acceleration improvement with the same traction power.
 - Efficiency improvement due to the regenerative braking.

Traction Control

• Partners

15/30 kW Battery System

Item	Units	Variant I	Variant II
Pack Configuration	-	12S2P (1x12S2P module)	12S4P (2x6S4P modules in series)
Nominal Voltage	[V]	44	44
Nominal Energy	[kWh]	5,3	10,6
10s Discharge Current	[A]	600	1.200
Continuous Discharge Current	[A]	200	400
10s Charge Current	[A]	225	450
Continuous Charge Current	[A]	135	270
Weight	[kg]	42	73
Dimensions (LxWxH)	[mm]	690 x 387 x 142	932 x 492 x 142

Indicated values are minimal and based on 50% SOC and 25 $^{\circ}\mathrm{C}$

V3 - Diesel 48V mild-HEV (GM)

15/30 kW Battery System

VARIANT I

advancing user acceptance of general purpose hybridized vehicles by improved cost and efficiency

The first **tab (pre-trip)** accesses Eco-Routing functionality. The second one **(in-trip)** presents the output of the Eco-Driving function. Via the **post-trip** tab the user gets a score for his performance based on the energy demand during the trip and on how good the speed advice was followed.

ADVANCED CONTROL

Computed in Simulink (real-time)

- ECO Routing: more complex than for ICE or EV due to additional degrees of freedom in the energy management system
- **ECO driving**: speed profile
- > HMI providing the driver real time information on the Eco-Routing and Eco-Driving functionalities
- Powertrain Energy Management strategy considering input from the optimized predictive control and driver request
 reducing energy consumption and emissions production (reducing the AdBlue consumption)
- > Thermal management including prediction of energy demand by the auxiliaries

Achievements Component Level

eHC concept definition

48V battery development for Opel Insignia

All values at 25°C.

eHC Driver

48V P4 development for Opel Insignia

PCM as heat storage

advancing user acceptance of general purpose hybridized vehicles by improved cost and efficiency

> PCM as heat storage (preconditioned thermal storage for conditioning the engine)

PCM test set-up: copper tubes for seperating PCM from coolant and heat transfer → Reducing heat-up time for ICE

Overall ADVICE validation and demonstration concept

Levels for demonstration:

- 0: Co-Simulation for extrapolation
- 1: ADVICE
- 1.5: implementation of some interactions
- 2: fully integrated (Post-ADVICE)

Hybrid typology: HEV - V1 (VCC)

Hybrid typology: P-HEV - V2 (CRF)

Hybrid typology: HEV - V3 (GM)