

AIT Austrian Institute of Technology

Thermal Battery Stack Modeling and Simulation for Optimizing Vehicle Operating Strategy

Dominik Dvorak

Dominik Dvorak | Electric Drive Technologies | Mobility Department

AIT Austrian Institute of Technology

AIT Mobility – Research Activities

Expertise in infrastructure, transport technologies and multi-modal mobility systems is the basis for addressing mobility needs from a systemic and integrated perspective. Research activities at AIT Mobility are organized in four business units.

Modeling and Simulation

- Modeling and simulation are commonly used tools in the automotive sector
- Investigating the operating behavior of multiphysical systems
- Analyzing in different application scenarios and environmental conditions
- Simulations eliminate the need to perform protracted real-life tests
- In the field of electric vehicles: energy efficiency is one of the main topics
- Target: improve maximum range
- Reduce energy consumption of auxiliary components
- Development and simulation of an electric vehicle traction battery model
- Focus on electro-thermal model and cooling circuit
- Modeling based on practical example
- Optimize the vehicle operating strategy

Practical Example

- Off-the-shelf electric vehicle
- Battery stack consisting of 88 interconnected cells
- Cell temperature must not exceed a critical temperature level during operation:
 - Consider cooling circuit and strategy
 - During electric load cycle
 - Under specific ambient conditions
- No general solution
- Determine level of abstraction
- Need proper simulation model

source: http://media.caranddriver.com/images/10q1/335484/mitsubishi-i-miev-battery-pack-photo-335601-s-520x318.jpg

Simulation Language and Tool

- Modelica / Dymola:
 - Modern object-oriented modeling language
 - Modeling complex multiphysical systems
 - Algebraic and ordinary differential equations can be used
 - Simulation tool
 - GUI for Modelica
- Python / Spyder:
 - Open source programming language
 - Post processing
 - GUI for Python

source: https://modelica.org/logo.jpg

source: https://www.python.org/static/community_logos/python-logo.png

Solution Approach

- Electro-thermal model of the battery system
- Cooling system model including cooling strategy
- SmartCooling library:
 - Convective heat transfer in pipes
 - Prescribed mass flow, pressure and volume flow
 - Pump and fan models
 - • •
- ElectricEnergyStorages library:
 - Electric equivalent circuit models
 - Cell and stack level
 - Scalable prismatic and cylindrical thermal cell models
 - Aging effects

Battery Model Concept

- Simplified electric model: 88 cells connected in series
- Focus on thermal model including cooling circuit
- Air cooling flow between and above the cells
- Overview of the chosen HV-battery including cooling concept:

Implementation – Thermal Model

- Cell model:
 - Heat capacity
 - Thermal conductance to surfaces

- Stack model:
 - Spatial cell interconnection
 - Cooling circuit

Parameter Extraction

- Testing laboratories:
 - Vehicle in idle mode
 - Log CAN bus data
- Cooling down of battery cells by air conditioning system
- Analyze thermal response of the battery system

Simulation

- Example scenario: cell temperature trend during specific load cycle
- Parameterization of the model
- Scenario assumptions:
 - Coolant temperature at inlet: 6 °C
 - Load cycle: FTP72
 - 88s1p configuration

Electric model Thermal model 匚 🕴 -----> -> Load ----cycle Air Air inlet flow Electric Thermal Air battery stack battery stack outlet

Results Discussion

- Preliminary Results:
 - Electric system response during FTP72 load cycle
 - Thermal system response during load cycle
 - Cooling permanently on

Conclusion and Outlook

- Conclusion:
 - Developed and implemented thermal model of EV battery including cooling circuit
 - Calibrated thermal battery model based on measurements
 - Proved applicability of the model via a practical application example
- Outlook:
 - Further vehicle measurements for validation and parameter extraction
 - Add reversible effects: state of charge dependency
 - Add irreversible effects: aging model
 - In different load scenarios
 - Using different operating strategies
 - Discretization of thermal cell models
 - Thermal influence of the battery container
 - Integration of the thermal battery stack in entire vehicle model

AIT Austrian Institute of Technology

your ingenious partner

Dominik Dvorak Electric Drive Technologies Mobility Department

AIT Austrian Institute of Technology GmbH Giefinggasse 2, 1210 Vienna, Austria T +43 50550 6096, F +43 50550-6901 dominik.dvorak@ait.ac.at