

R&D and Trends of EV Industry in Korea

Nov. 14, 2019

Contents

Trends in Automotive Industry 2025

Future technology keywords of future vehicles in 2025

Electric vehicles (BEV, FCEV, HEV, etc.)

Eco-Friendly · Low Fuel Consumption

Background and Regulation Enhancement

CO₂ gas emissions \rightarrow

Global warming acceleration and cold, aridSudden increase in abnormal weather

Deforestation in the Amazon Rainforest

* Source : Research of Paulista State University in Brazil

Irreversible Collapse of Antarctic Glaciers

- 130,000 ~ 200,000 km² lost
- Melting speed increase

* Source : IPCC, NASA etc.

Enhanced Environmental Regulations

(CO₂ regulation roadmap of each country)

"Ongoing reduction efforts in major markets"

- * Reduction effect of CO_2 in EV 1,000 BEVs = 667,000 trees = 3,000 tons of CO2
- * ICEV = 3 ~ 4 tons of CO₂/year

Eco-Friendly · Low Fuel Consumption

– Market Forecast of Eco-Friendly Cars

Eco-friendly car market 1.9 million units (2.2%) in 2013 \rightarrow Rapid growth to 17.2 million units (15.2%) in 2025

Source : his, Fuji Keizai Group

EVs in Korea

- Total: 57,000 early distribution mainly in Jeju island
- Expanding to main cities (Seoul, Gyeonggi, and Daegu)
- Significant increase after launching 400km-single-charging vehicles such as, Kona Electric and Niro, Chevrolet Bolt

EV Fast-Charging Infrastructure

Total: 1,700 units by MoE, KEPCO and local governments (both rapid and slow)

Eco-Friendly Car Industry strategy- Korea

- Distribution(subsidy): BEV, FCEV, micro EV, electric bi/tricycle (Some models have no limit on the number of grants available for business use.)
- Infrastructure: MOE, KEPCO, local government- charging infrastructure, mandatory charging facilities for multi-family houses
- User benefit: highway toll and public parking lot discounts
- Industry revitalization: 30 new technologies in roadmap for new industries
 - One of the five leading projects in the electric autonomous vehicle industry

Eco-Friendly Vehicle

Korea's Eco-Friendly Car Policy (EV)

42,000 electric cars and 300 electric buses in 2019 Expansion of charger (national led and private assistance)

- Distribution target → Individuals, public institutions, local governments, etc. (excluding Central Administrative Agencies)
- Subsidy satisfied "Regulations on Evaluation System on Supply of EV"
- Subsidy is paid to perform. and config.(single charge mileage, battery capacity, etc.)
- Classification \rightarrow passenger, subcompact, vans, buses, 2/3-wheeler
- Total subsidy \rightarrow Governt. + local = \$3,600 ~ 85,000

Government subsidies

Goal

Electric car	Micro electric car	Electric car		Electric vans (busses)	
Max. \$7,700	Max. \$3,600	Light, \$9,400	Small, \$15000	Medium, max. \$50,000	Large, max. \$85,000

Korea's EV Innovation & Growth Policy

xEV Innovation & Growth Policy

Increasing charging Infra

Goal : Establishing 10,000 EV fast chargers by 2022 "Anytime & Anywhere"

- 3,800 Fast Chargers were installed till 2018, over 1,500 F.C will be established each year
- * Number of F.C(accumulative) : ('15) $523 \rightarrow$ ('16) $1,050 \rightarrow$ ('17) $2,531 \rightarrow$ ('18) 3,800

Charging electricity cost for EV dropped from 0.25 \rightarrow 0.14 \in /kwh('17.1.12)

EV user oriented charging station

HOME

Establish Slow & Fast charger In apartment complexes in Korea

ON THE ROAD

EV charging system in the rest area of every highway & change to dual charging station (gas+electricity) for gas stations on highway

DESTINATION

Focusing on railway station & big mart in urban living space

xEV Innovation & Growth Policy

Obligatory Purchase by Public Institute

Public institute Should purchase green cars over 70% for new purchase or rent vehicles

EV & FCEV are more than 80% of green car

Upswing to 100% by 2022

xEV Innovation & Growth Policy

Technology development of EV's core components

Korea's Eco-Friendly Vehicle Policy(FCEV)

Grant Support

- (Hydrogen car) Government subsidy \rightarrow \$20,000 + local(up to \$11,000)
- (Charging station) Government \$130,000+local 130,000(same)
- (Hydrogen bus) Government \$170,000+local 170,000(same)

Tax Reduction

- Individual consumption and education tax \rightarrow Up to \$4,500
- Acquisition tax \rightarrow up to \$1,200
- Railroad bond \rightarrow \$2,100

Industrial Development Roadmap(BEV)

Goal

Single-charge mileage : $300 \rightarrow 600$ km (2 times) 3x charging speed \Rightarrow Early popularization of electric vehicles

- Energy density and capacity of battery packs (200Wh/kg)
- Intensive development High voltage(800V class) drivie system to improve energy efficiency
- Reduced charging time to 1/3 of present in 2022
- ★ Charging output(120kW → 400kW) for super fast charging system
- 400A high-current charging coupler (charger-car connector)

Hybrid EVs

Common key components for HEV to FCEV \rightarrow battery, motor, inverter. Core technology of motorization is 'high energy battery' and the power semiconductor to control it.

Main parts technology

o Battery

- To expand the range of electric vehicles (above 300km)
- Mainly develops Li-ion battery electrode material
- Developed beyond Li-ion battery (Li-S, li-Air, solid-state battery, etc.)

Industrial Development Roadmap (FCEV)

- Doubled the durability of hydrogen car

Goal

- Reduced price by 30%
- Secured high-capacity and rapid hydrogen charging system
 - → Distribution of Hydrogen Vehicles

Entered the initial stage of commercialization

The ultimate eco-friendly car driven by the electric energy generated by hydrogen – oxygen reaction

High component prices and hydrogen production & construction infrastructure are obstacles in the short run

2020 → Popularization

FCEVs

Status

Strategy	Developing FCEV core technology continuously & establishing more hydrogen charging station. Implementing demonstration projects for public service(bus, taxi) Target : Distributing 65,000 FCEVs by year 2022 & Establishing 310 hydrogen charging station
Current	 Hyundai developed Tucsan IX FCEV in 2013 → NEXO SUV, 2018.3 198 FCEV were distributed to public institutes in Korea.

15 hydrogen refueling stations are in operation by 2018.

Demonstration Pilot Project

KTX fast railway station Car sharing service

Taxi service at Ulsan

5 ton truck

Bus service at Pyung Chang olympic

New NEXO SUV

Industrial Development Roadmap – Autonomous Vehicles

9 core parts: High performance radar and LIDAR sensor, Image sensor, sensor fusion technology, V2X module, vehicle control processor, etc.

Commercialize service technology related to autonomous driving in 2022

 ★ Multi-purpose autonomous-driving service vehicle
 → Demonstration of promising service models such as autonomous shuttle service

Autonomous Vehicle-Road Map

Autonomous driving system commercialization in low-speed road section \rightarrow highway \rightarrow full autonomous driving

Autonomous Vehicle – Technology Details

Category	Scope
Energy storage / management system	Core raw material, battery cell, battery module / pack, BMS, PRA, cooling system, VIT measurement, cell balancing, protection circuit, VIT precision, SOC and SOH output, cell balancing, thermal management, communication, diagnosis
Power conversion system	Inverter, converter, onboard charger
Electric drive system	Permanent magnet motor, non-permanent magnet motor, SI-series inverter, non SI- series inverter
Electric Vehicle Charging Infrastructure	Electric vehicle charger (fast), infrastructure construction, wireless charging system
Camera for self-driving	Rear view, around-view monitoring, mirrorless camera, camera module, lane recognition, vehicle recognition, pedestrian recognition, light source recognition, road sign recognition, distance information detection, video record of incident
Convenience system for drivers	Detection sensor, active safety system, driving support system, accident reduction system
Information system	Driver information, interface, and information generation technology
Eco-friendly lightweight parts	PCM material, unpainted/plated material and processing, foam material, bio-based eco- friendly material, transparent material, homogeneous composite material, heterojunction material, natural fiber material, sandwich and hollow section layers, flame retardant material

Accelerate the development of an intelligent safety technology that pursues safety and driving convenience simultaneously

Technology development & standard adoption for autonomous driving

Early self-development of core technology for autonomous driving

- Localization of core parts that are highly dependent on foreign countries
 - Developing 9 core parts such as Lidar (2017~2021)
 - Localization of AI, vehicle semiconductor(~2023)

Development of 5G-based autonomous mobile communication technology

* Real-time high-speed communication module and SW

Connected Automated Vehicle

Securing world-class autonomous vehicle competitiveness

Construct a world-class demonstration complex

- Review to designate the autonomous driving regulation sandbox special zone (Amendment of Industrial Convergence Promotion Act, '18)
 - Within this year, two autonomous driving demonstration complexes will be designated
- Smart City is designed as an electric car and autonomous car-friendly type from the development stage

First real road-based college student autonomous car contest was held('18.10)

* Promote the interest of the public by proceeding on actual roads in the city (Daegu)

Implementing demonstration projects based on autonomous driving

Autonomous courier service

Traffic abbreviations calls and moves

Autonomous speech recognition Secretary

Create new industries & job based on future vehicle

Creating a new service market

- Developing service models through the Connected Services Alliance(2018)
 - * A variety of companies, including car makers, IT, and telecom, participate to discover promising business models

Build big data to support commercialization of SME service(2019)

* Predictive maintenance of automobile parts, analysis of driving propensity, insurance design, etc.

Demonstration of new EV service industry

Energy: Connect electric cars to the power grid(V2G, 2018)

- Enhancing V2G technology such as 2-way charging
- * Meeting 1 day electricity demand of 3 households with 1EV v2G

- Environment: Wasted battery recycling system
 - Utilizing wasted battery of electric car as ESS
 - Recycling after recovering minerals such as lithium
 - * Establishment of Jeju waste battery recycling center (2017 ~ 2019)

Smart Car – Connectivity

Synchronization with mobile IT devices in vehicles including CarPlay, Android Auto
 Provides personalized contents and personalized & intelligent services through wireless Internet network using cloud computing technology

Smart Car – Connectivity

Convenience technologies (safety, intuition, conciseness) to understand consumer sentiment Additional services through driver monitoring and enhanced security with biometrics

Personal E-Mobility

Personal E-Mobility

Electric Drive System Development – Motor Aspect

Sector Electric motor

- Performance(efficiency, output, etc.) + lightweight → IPMSM → most common
- Large capacity + cost competitive + rare earth magnet

 \rightarrow high-efficiency IM, Wound field sync. motor (WFSM)

• SRM, PMA-SynRM + spoke-type ferrite motor \rightarrow under development.

Efficiency

Winding: Fill factor improvement and copper loss reduction ;

sub-issue → automation and durability → Hairpin winding + core, concentrated winding + split core, star winding + split core

- [IPMSM] Core loss, eddy current loss reduction: V or △ shape, permanent magnet split or laminated
- [IM] Conv. aluminum or copper fabrication → copper die-casting

Development of Traction Motors

Electric Drive System – Driving System Aspect

Mechanical or electrical multi-gear application

- Mechanical multi and continuous transmission
- Electric multi-gear
- Cooling technology (cooling is a key factor for high power density)
 - Stator: Water cooling or end-coil direct cooling
 - Rotor: Cooling flow path through shaft

Integrated motor, inverter and reducer

- Connected by bus bar w/o harness: minimizing copper loss and electromagnetic noise
- Housing sharing improves power output density with optimal cooling

Power Converter Trend

Small, lightweight / high density

- Low sw. loss and high heat dissipation \rightarrow WBG semiconductor(SiC, GaN, etc.)
- Self or water-cooled heat dissipation structure for miniaturization.

* High efficiency

- Application of soft switching techniques such as ZVS, ZCS and high efficiency topology

Integrated structure

- Eliminate spatial constraints in vehicles, wire harness reduction, maintenance, cooling structure sharing

- Motor + inverter, inverter + LDC, LDC + OBC, Low voltage battery + LDC, etc.

