DAIMLER

Daimler's perspective on alternative propulsion systems and the new Mercedes GLC F-CELL

-

Dr. rer. nat. Jörg Wind Daimler Group, Kirchheim/Teck-Nabern

Daimler is shaping the future of mobility in many aspects. We re-invent the car!

Fuel Cell Technology is an Integral Part of Daimler's Powertrain Strategy

Well-to-Wheel Comparison of Greenhouse Gas Emissions and Energy Consumption of EUCAR Reference Vehicles (C-segment passenger car) 2020+

Well-to-Wheel Consideration of Fuel Cell Plug-in-Hybrid

Highly efficient combustion engines with additional 48 volt onboard network with a belt-driven starter/alternator

Example C 200 Estate

Fuel consumption combined: 6,2 I/100 km; CO₂-emission combined: 142 g/km

Daimler AG

3.2 CASE Page 6

ROOST

Next milestone in hybridization

Fuel consumption combined: 2,1 I/100 km, CO₂-emissions combined: 49 g/km, weighted power consumption: 15.5 kWh/100 km, all-electric range of around 50 kilometres.

Daimler AG

Clear Commitment to E-Mobility

10 bn Euro invest in electric vehicle fleet

Various electrified alternatives in every segment – from the compact car to the major SUV

New brand EQ for electric vehicles

> 10 Electric vehicles on the market by 2022

Significantly more than 130 electrified vehicle variants on the market by 2022

World premiere EQC – First Mercedes-Benz vehicle to be launched under the EQ brand

smart fully electric in Europe & US by 2020

Daimler AG

- Mercedes Benz Cars -

eVito: Electrically powered, mid-sized van has been available to order since the end of 2017

- Ecosystem to electrify commercial fleets
- Range of up to 150 km
- Designed for innercity delivery, commercial and passenger transport

S.PU1256E

Driving the electric future

The new electric Vito

Electric, locally emission-free and silent: Our battery-powered commercial vehicles for urban areas

Thomas Built Buses Jouley

2017: World premiere2018: Innovation fleet2019: Small series

Mercedes-Benz eActros

2016: World premiere 2018: Innovation fleet ~2021: Market introduction FUSO eCanter

Freightliner eCascadia & eM2

2018: World premiere2019: Innovation fleet2021: Market introduction

- Daimler Trucks -

The all-electric Citaro: Emission-free through the city

- Modular design of battery packs allows range to be tailored
- Innovative thermal management
- eMobility system:
 - eConsulting before procurement
 - eMobility service of brand OMNIplus
- World premiere IAA Commercial Vehicle Sept. 2018
- New generation FC bus with FC range extender

MA.EV 1053

Daimler has the broadest experience with fuel cell Technology: Highlights from fleet operation

B-Class F-CELL

- > 10 million km in Europe and USA
- > 300.000 km driven in one single vehicle
- < 3 minutes average refueling time on the basis of 36,000 refuelings

Customer - Feedback

Consistent positive feedback

- "After driving the F-CELL, you don't want to get back to your old car!"
- "My next car will be a Fuel Cell car again!"

Citaro FuelCELL-Hybrid

- > 5 million km in Europe
- Press release of an operator

> 1 million km in regular operation 1,200 tons of CO_2 avoided

Wide field of applications for fuel cell drive - with different configurations

Individual Mobility demand with long range requirements > 500 km also in middle segment

- B High speed highway use cases requires higher storage capacity
- C Use-on-demand applications (carsharing) with FCEV more robust vs. availability of cars

Significant number of larger & heavier cars in the portfolio

The current generation of fuel cell vehicles: Mercedes-Benz B-Class F-CELL

Specification	
Vehicle	Mercedes-Benz B-Class F-CELL
Fuel Cell System	90 kW (122 PS)
Traction Motor	Power (cont./peak): 70/100 kW (136 PS)
Range	380 km (NEDC)
Maximum Speed	170 km/h
Acceleration 0-100 km/h (0-60 mph)	11,4 s
High Voltage Battery (Lithium-Ion)	Power (cont./peak): 24/30 kW Capacity: 6,8 Ah, 1,4 kWh

The current generation of fuel cell vehicles: Mercedes-Benz Citaro FuelCELL-Hybrid

Characteristics		
Vehicle	Mercedes-Benz Citaro FuelCELL-Hybrid	
Fuel Cell System	120 kW(cont.)/ 140 kW)peak)	
Traction motor	Power (continuous/peak) 2 x 80 kW / 2 x 120 kW	
Range	> 250 km	
Hydrogen storage	35 kg hydrogen at 350 bar	
H ₂ consumption	10 – 14 kg/100 km	
High-voltage battery	Power: 250 kW Capacity: 6,9 kWh	

Mercedes-Benz GLC F-CELL: Fuel Cell Electric Vehicle with Plug-in-Technology

S MB 154E

Next generation fuel cell powertrain

Next Generation Fuel Cell Vehicle: "The Fuel Cell gets a Plug!"

	Increase in range to 478 km from hydrogen and 51 km from HV-battery
	Driving power: 155 kW
	Volume of fuel cell engine: - 30 %
	Reduction of platinum in fuel cell stack: - 90 %
	Switch to plug-in-battery, in order to satisfy the gradual build-up of hydrogen infrastructure
Electric Intelligence by Mercedes-Benz	Cost-efficient carry-over of various high-voltage components from the Mercedes-Benz modular system

Daimler's Next Generation Fuel Cell Engine

- High level of component integration
- Increase in fuel cell stack power density by ~ 100 % compared to B-Class F-CELL
- Introduction of electric turbocompressor for air supply
- Absolute platinum content in fuel cell stack reduced by 90% compared to B-Class F-CELL
- Increased amount of seriesproduced carry-over parts (e. g. air filter, coolant pump)

Fuel Cell Power Train for Vans

Mercedes Concept Sprinter F-CELL presented in Hamburg July 2, 2018

Important Parameters for Optimization of Fuel Cell Drive

Technology

- Power density
- Energy density (Battery)
- Storeable amount of hydrogen
- Lifetime

H_2 -Infrastructure

- Reliable refueling technology
- Built up of nationwide H₂-Infrastructure
- H₂-Production at competitive cost
- Renewable produced hydrogen

Cost

- Fuel cell system and stack
- HV-Battery
- H₂-Storage and H₂-Infrastructure
- Power electronics
- Electric drive
- Cost of hydrogen

Customer Wishes

- Attractive vehicle platform
- High range and low consumption
- Convincing driving performance
- · Unrestricted availability of the drive system

H₂-Infrastructure – Activities Worldwide Overview

Expected H₂-Infrastructure Development in Germany

H₂-Infrastructure development based on availability of the vehicle

> Currently* 328 HRS worldwide in usage, 227 HRS of them are useable in public

HRS: Hydrogen Refueling Station (700 bar PKW) | JV: Joint Venture ZEV-States: Arizona, Connecticut, Maine, Maryland, Massachusetts, New Jersey, New Mexico, New York, Oregon, Pennsylvania, Rhode Island, Vermont, Washington

H2Mobility Initiative in Germany Build-up of a Hydrogen Refueling Station-Network

Thank you very much for your attention!

