Efficiency Matters for Mobility

Ann M. Schlenker Director, Center for Transportation Research Argonne National Laboratory

> Presented at A3PS – ECO MOBILITY 2018 Vienna, Austria November 12th and 13th, 2018

DOE'S NATIONAL LABORATORY COMPLEX

CONVERGING TRENDS ARE SHAPING MOBILITY

By 2045, the

number of

Americans

over age 65 will increase

by 77%.

Population

Population expected to grow by 70 million in next 30 years

Demographics

Technology

75% of population concentrated in **11** Megaregions

73 million aged 18 to 34.

They drove **20%** fewer miles in 2010 than at the start of the decade.

TRENDS ARE CAUSING A FUNDAMENTAL DISRUPTION

Ride-hailing

New Powertrains

Automation

Car-sharing

New Modes

DAILY HEADLINES – SURPRISING PARTNERS and ENTRANTS

Argonne

BEYOND CONGESTION IMPACTS: Air Quality, Climate, Quality of Life Each Year, Traffic Congestion Costs Us:

Data from Schrank, B., Eisele, B., Lomax, T., and Bak, J. (2015). 2015 Urban Mobility Scorecard. Technical report, Texas A& M Transportation Institute..

EFFICIENCY...

Household expenditures Use of natural resources Use of time Hassle-free movement Service expectation Technology speed to market Improved product development cycle

EFFICIENCY MATTERS AT ALL LEVELS

FUTURE MOBILITY SCENARIOS – BREADTH OF OPTIONS

SYSTEM ENGINEERING AS URBAN AREAS FACING SIMILAR CHALLENGES

While the cities were diverse, many of the 78 applicants faced similar urban mobility challenges:

Providing first-mile and lastmile service for transit users to connect underserved communities to jobs

Coordinating data collection and analysis across systems and sectors

28 percent of all of the transit agencies in the United States have open provided transit times to

Limiting the impacts of climate change and reducing carbon emissions

> The 78 applicant cities illion metric tons of CO² emissions per year

Facilitating the movement of goods into and within a city

estimated \$28 million annually in truck operating costs and wasted fuel

Reducing inefficiency in parking systems and payment

An estimated 30 percent of traffic in urban areas is caused by cars looking

...

Optimizing traffic flow on congested freeways and arterial streets

Outdated traffic signal timing causes more than 10 percent of all traffic delay ╡┇┝

URBAN OPPORTUNITIES and CHALLENGES

- Transit ridership decrease with TNC
- Parking revenue decrease
- Curb space tension
- Zoning changes
- Congestion / VMT increase with added mobility
- E-commerce delivery frequency
- Infrastructure modifications, Signal Control, Lanes.....
- New business models and start-ups
- Expanded modes of travel
- CAVs testing and operation
- Policy ramifications
- Equity
- Vision Zero traffic fatalities

Advanced Fueling Infrastructure

Connected & Automated Vehicles

DOE SMART MOBILITY LAB

Urban Science

Multi-Modal Transpo<u>rt</u>

CONSORTIUM

7 labs, 30+ projects, 65 researchers, \$34M* over 3 years.

Mobility Decision Science

FUNDAMENTAL DISRUPTION, DRAMATIC ENERGY IMPACTS

+200%

Potential Increase in Energy Consumption

2050 Baseline Energy Consumption

> Potential Decrease in Energy -60% Consumption

-60%

-40%

Effect on Baseline Energy Usage (%)

-80%

Collision Avoid

Platooning Vehicle Resizing

-100%

0%

20%

-20%

QUESTIONS FOR FUTURE MOBILITY SCENARIOS

- National and Regional Level Energy Impacts
- Vehicle Level Energy Impacts, Coordination and Communication
- Vehicle Ownership Models for Private vs Shared
- Freight Movement, Delivery of goods, E-commerce trends
- Interactions with Infrastructure Systems and Urban Environment
- Behavior, Motivations, Values
- Non-Car Modes
- Ride Sharing
- Value of Travel Time
- Mobility Energy Productivity
 - Energy, GDP, Access to Opportunity, Quality of Life

BUILDING BLOCKS FOR EFFICIENT MOBILITY

AS MOBILITY AND TECHNOLOGY EVOLVES, SO MUST ANALYTICAL TOOLS FOR NEW KNOWLEDGE

Single Vehicle

Corridor / Small Network

Entire Urban Area

- Funded by US DOE
- Vehicle energy consumption and cost
- VTO requirements & benefits
- Only commercial tool with vehicle level control
- Licensed to >250 companies

RoadRunner

- Funded by US DOE
- Only system simulation of multivehicle and their environment focused on advanced control enabled by V2V, V2I...
- Use Autonomie powertrain models

- Commercial Tools
- Microscopic traffic flow simulation
- Focus on detailed traffic flow, control

- Funded by US DOT/FHWA
- Agent-based mesoscopic traffic flow simulation
- Focus on traveler behavior, system...
- Use outputs from microsimulation, Autonomie, GREET & MA3T

HIGH EFFICIENCY and HIGH THROUGHPUT ENABLED BY HPC

First Exascale Machine in 2021 @ ANL

Leverage BIG Data with Machine Learning – Component, Vehicle and Transportation System Level

Capture Efficiency throughout the value chain

FUTURE MOBILITY SCENARIOS STUDIED

Impact of coordinated platooning and CACC on energy

Impact of multi-modal travel

CAV impacts on value of time and network performance

ENERGY IMPACT OF V2V, I2V

EcoSignal

6000

5000

1000

0

veh1 veh2

veh3

100

200

300

Position vs Time

400

Time, sec

500

600

700

800

(2) Connected Vehicle

Platooning

Energy Consumption Improvements – V2V, I2V, V2I, but the Traveler Behavior Can Increase the Overall Energy Used

Component Optimization

Connectivity reduces the number of shifting events, leading to potential transmission redesign and increase reliability

Example scenario: 20 - 40% gear shift reductions

Eco-Signals (V2I...)

Knowledge of the environment (i.e. traffic light signal) enables vehicle speed control to minimize stops

Example scenario: 5 -14% energy savings

Model Predictive Control (Indiv. Vehicles)

Knowledge of the environment enables simultaneous optimization of vehicle speed and powertrain control

Example scenario: 6% energy savings for Pre-transmission HEV

Traveler Behavior

Low value of time (VOT) increases VMT and energy (up to 45% for high AV penetration and low VOT!)

PROACTIVE PARTICIPATION WITH PRIVATE AND PUBLIC PARTNERSHIP- BEYOND IMAGING AN EFFICIENT MOBILITY FUTURE

