Connecting Austria
Lead project for connected, cooperative, automated driving

Connecting energy-efficient and semi-automated trucks from the motorway to the city

Andreas Kuhn, ANDATA

A3PS Conference
November 2018
Expected Benefits from Automated Driving

- Sounding project for test field for automated driving 2016/2017
- Validation concept for automated driving functions
Expected Benefit Categories for Automated Driving

- Changing traffic modes
- Choosing the right traffic mode according to the given situation

Benefits of Automated Driving

- **Comfort**
 - Driving slow
 - With low density
- **Safety**
 - Driving slow
 - With low density
- **Traffic Effectiveness**
 - Changing traffic modes
 - Choosing the right traffic mode according to the given situation
- **Traffic Efficiency**
 - Driving faster
 - With high density
 - More responsive
- **Vehicle Efficiency**
 - Less responsive
 - Driving slow
 - High density for wind shadow

The only intrinsic feature!!!

- E.g., automation levels 3
Methods of Choice in Development and Validation of Automated Driving Functions

- Scenario-based Development
- Prospective Effectiveness Assessment
- Machine Learning & AI
- Integral and Holistic Top-Down Development Procedures
Scenario-Management and Development/Approval of Actions

(Monte Carlo) Variations of
- actions and vehicle characteristics
- behaviours (driver & traffic)
- streets & environment
- traffic (volume & constitution)
- traffic control
- communication (Car2X)

➢ MILLIONS OF SIMULATIONS
Detection Rates versus Misclassification for Algorithm

Sensor Concept Variants

- SC-01
- SC-02
- SC-03
- SC-04

➤ Specification for necessary sensors and information (incl. V2X)
Prospective Effectiveness Assessment

Partially dramatic differences in effectiveness
• due to details in concept realization (i.e. wrt sensors and algorithms)
• due to situations in specified „field of effectiveness“

See:
• On the Performance Evaluation of Integral Safety Systems, Andreas Kuhn et.al., SafetyAssist 2013
• Development Processes and Accompanying Performance Evaluations of Integral Automotive Safety Systems, FISITA 2014
Connecting Austria

- Lead Project for Automated Driving in Austria
- Platooning as instrument for improved energy and traffic efficiency
- Development and assessment of cooperative, connected, (semi-)automated driving strategies
- 4 Principal Scenarios
4 Principal Scenarios

S1: Highway Entry
S2: Highway Danger Zones
S3: Highway Exit
S4: Controlled Intersection
Main Entities with Effects on Automated Driving

- Traffic Situation
- Traffic Control & Management Systems
- Infrastructure
- Laws & Guidelines
- ADAS & Automated Driving
- Behavior of Drivers & Traffic Participants

Effects:
- Comfort
- Safety
- Vehicle Efficiency
- Traffic Efficiency
- Traffic Effectiveness
Main Entities with Effects on Automated Driving

Traffic Control & Management Systems

- Traffic Situation
- ADAS & Automated Driving
- Laws & Guidelines
- Behavior of Drivers & Traffic Participants
- Infrastructure

Quantification of Dependencies

- Comfort
- Safety
- Vehicle Efficiency
- Traffic Efficiency
- Traffic Effectiveness

Control Algorithm

Cooperation
R&D Approach / Procedures

- Comfort
- Safety
- Vehicle Efficiency
- Traffic Efficiency
- Traffic Effectiveness

Theoretical Potentials and Effectiveness

Practical Potentials and Effectiveness

Risks and Potential Counter Effects

Total Multidisciplinary Effectiveness

- Naturalistic Driving
- Traffic Observation
- Scenario Management

- Infrastructure & V2X & Traffic Control
- Vehicle Control Strategies
- Laws & Guidelines
- Dynamic Road Risk Map
Theoretical Potentials and Effects Due to Wind Shadow

- Theoretical fuel savings due to reduced distances
- Evaluation for different distances and vehicle configurations
- Practical effectiveness e.g. including reduced cooling
What are the (theoretical/practical) potentials of platooning according to traffic efficiency?

- What are the traffic advantages due to reduced distances in comparison to real traffic situations?
- Evaluation of realistic traffic situations (together with ASFINAG)

- Theoretical potentials wrt traffic densities and flow rates
Which traffic situations will result in additional congestion?

- Example
 - Elephant races: overtaking with few speed differences
 - Overtaking of long truck pelotons

Potential risks wrt traffic congestions
Different cooperative control strategies and their consequences

- Scenario based evaluation of different vehicle control strategies

- Potentials and risks of control and driving strategies for more safety and efficiency
What are necessary lengths and durations for overtaking?

- When to begin/avoid overtaking for prevention of avoid weaving

- Potential risks wrt safety
Advantages due to local and temporal compression?

- **Scenario**
 - Lane reduction
 - Tunnels, construction sites, accidents

- **Target**
 - Efficient lane merge
 - Minimal lost time
 - Maximum safety
 - Avoidance of congestion

- **Example:**
 - Zip-Assistant System
Traffic Micro Model of Hallein

- Scenario based evaluation of different traffic control strategies
- Extensively validated micro model of Hallein for evaluation of different control strategies and traffic situations
Simulation of different control strategies
- Variation of vehicle control actions
- Variation of traffic control actions
- at different traffic situations

- Green time extension
- Green time start assist
- Local compression

Traffic Analysis for Test Region Hallein
Evaluation of Traffic Situations with xFCD

- Automated detection of relevant traffic scenarios

- FCD evaluations and anomalies detection already running
Automated Object Detection

- Video-Tracking of all traffic participants
Automated Detection of Traffic Situations

- Video tracking with continuous trajectories across intersections

© SCCH

© SCCH

Comfort Safety Vehicle Efficiency Traffic Efficiency Traffic Effectiveness

CONNECTING AUSTRIA
Automated Detection of Anomalies and Dangers

Driving at wrong lane Diagonal crossing of intersection
Data Acquisitions from Fleet and In-Vehicle Data (Naturalistic Driving)
Solution Concept for Development/Validation
Automated Driving and Traffic Automation

Scenario Management
Scenario Catalog

- Simulations
- Naturalistic Driving
- Connected Mobility
- Test Fields

The Data Cube(s) for Vehicle and Traffic Automation

- Artificial Intelligence
- Big Data Analytics
- Robustness Mgt
- Complexity Mgt
- Effectiveness Rating
- Reference Systems
- System-of-Systems
- Conflict Analysis
- Cond. Probabilistics
- Var. Labellings

Variation of Systems/Components
Variation of Situations / Conditions
Variation of Actions
Variation of Behaviours

- Quick Identification and Resolution of Requirement Conflicts
- System Understanding
- Conform Specification of Components
- Realistic Performance Ratings
- Best Control Algorithms

© ANDATA, granted and pending patents
Dynamic Risk-rated-map

Adaptive wrt
- local conditions
- traffic situation
- weather
- temporal incidents
- ...

[Map with various colors and labels indicating different categories such as Free For Platoon, Non free For Platoon, Entries, Exits, Bridges, Tunnels]
Summary and Conclusions

- Connecting Austria: lead project for connected, cooperative, automated driving
- Scenario-based development of platooning strategies and control policies
- Focus on infrastructure aspects and safe traffic/vehicle efficiency
- Carry on validation concept from WienZWA
- Preparing next steps for Car2X
- Open for 3rd party Platooning Tests
Thank you

Dr. Andreas Kuhn
office@andata.at
www.andata.at
www.connecting-austria.at
13 Project Partners
Projektdaten

- Projektdauer: 36 Monate
- Projektstart: 01/01/2018
- Projektbudget: 4,3 MEuro
- Projektförderung (bmvi): 2,5 MEuro
- www.connecting-austria.at
- Projektleiter: Dr. Wolfgang Schildorfer, mailto: connecting-austria@hitec.at
Technisch inhaltlicher Hintergrund

- Ausgangssituation
- Ergebnisse aus WienZWA
Example of „Misinformation(?)“ about Traffic Situation

What’s going wrong?
- TMC-Message?
- C-ITS-Message?
- Internet?
- Data fusion algorithm of car?
- Policy of message provider?
- Typing error of operator in traffic management center?
- Error of algorithm for traffic prediction?
- Misinterpretation of C-ITS codes?
- ...

Consequences for automated car?
- Stop?
- Reroute?
- Gain confidence? Ask for confirmation?
- Eyes (/ears) shut and go for it?
- ...

Traffic Control & Management Systems

ADAS & Automated Driving

Traffic Situation

Infrastructure

Laws & Guidelines

Behavior of Drivers & Traffic Participants
Main Entities with Effects on Automated Driving

- Traffic Situation
- Infrastructure
- Laws & Guidelines
- Behavior of Drivers & Traffic Participants
- Traffic Control & Management Systems
- ADAS & Automated Driving

Diagram showing relationships between entities.
Laws of Robotics aka Asimov's Laws

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

- Automated cars must be very conservative and defensive!
- Will other traffic participants compensate to take individual, singular advantage?

- Singapur's solution: FINES for non-cooperative bahaviour
Who takes over responsibility and coordination?

Thought experiment: crowded situation at intersection with automated, self driving vehicles

Nothing different than today!

- Somebody has to take the lead and control
- Traffic control cannot be avoided and skipped

But:

- Self driving cars can be trained to be cooperative
- Traffic control must be refactored/redesigned to take advantage

Automation of traffic control
Who takes over responsibility and coordination?

Thought experiment: crowded situation at intersection with automated, self driving vehicles

- Nothing different than today!
 - Somebody has to take the lead and control
 - Traffic control cannot be avoided and skipped

- But:
 - Self driving cars can be trained to be cooperative
 - Traffic control must be refactored/redesigned to take advantage
 - **Automation of traffic control**
Data Driven and Evidence Based Development Procedure

- Overwhelming complexity requires new development and testing paradigms

- Open test fields as common playground for all disciplines
Dependent Methods for Automated Driving Development

- Complexity & Robustness Management
- Effectiveness Rating
- Parametrized Field of Effectiveness
- ML based Reference Algorithms
- Process Automation
- Conflict Analysis
- Big Data Analytics
- Artificial Intelligence & Machine Learning
- Anomalie & Incident Detection
- GIS
- Behavioral Models
- Usability Testing
- Naturalistic Driving
- Open Test Fields

Scenario Based Approach
- different actions/systems
- different situations
- different behaviours
- different components
- different detailization levels

System-of-Systems Architecture

Connected Mobility
Evaluation and Rating of the Systems and Components

- Evaluation of effectiveness accompanying the product development process

Market driven > Requirements/Spec

Field of Effects

Electronics

Sensors

Algo

Action

Neural Networks, Machine Learning

Functional requirement for algorithm:
- Which action to take when
- in which situations
- based on which sensors/information

Effect! > Visible to customer
Scenario Management and Automated Design/Development of According Actions