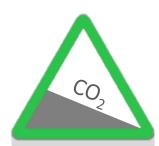


Application of Electric Water Pumps on a Heavy-Duty Diesel Engine

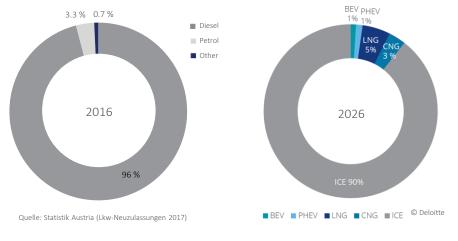
Forschungsgesellschaft für Verbrennungskraftmaschinen und Thermodynamik mbH Inffeldgasse 19 | 8010 Graz | Austria

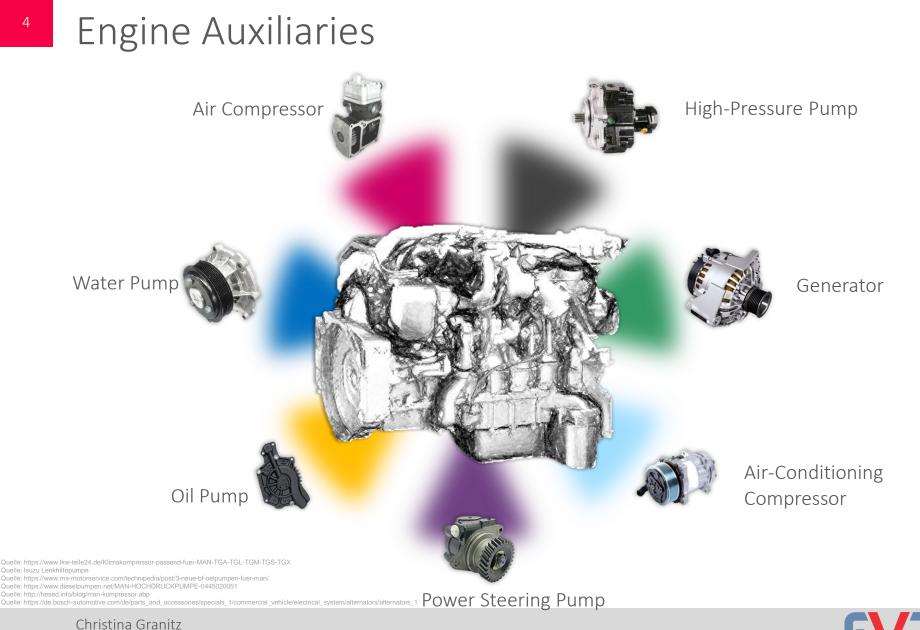

Christina Granitz, Peter Grabner, Helmut Eichlseder

14.11.2018

- Environmental aspect \rightarrow need for CO₂ reduction
- Pollutant emission regulations led to a long period of stagnation of fuel consumption for HDVs
- From 2019: mandatory fuel-efficiency standards for HDVs (VECTO) require 30 % less CO₂ emissions in 2030
- Investigations of potential efficiency increasing technologies

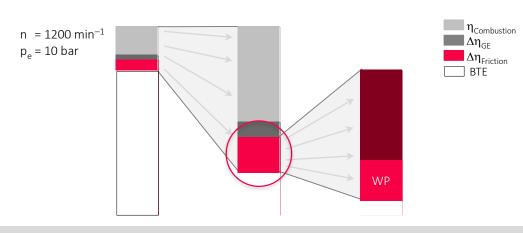
40	· · · · · · · · · · · · · · · · · · ·	- 0,		0-1-0-2=	-	
35				0		
30		1	Avg. annual change	<pre># of trucks in analysis</pre>		
25		-o- Daimler	-0.48%	17		
20		-o- Scania	-0.18%	20		
		DAF	+0.08%	14		
15		-o- Volvo	-0.07%	11		
10		-o- MAN	+0.37%	12		
5		-o- lveco	+0.04%	12		
5		-o- Renault	+0.20%	11		© ICCT
0	L	2006 2007				





Heavy-Duty Vehicles | Long Haul Trucks

- 2016: 96 % of all registered trucks and tractor-trailers in Austria have a Diesel powertrain
- 2026: 90 % of long haul trucks still expected to have an ICE powertrain
- Purchase criteria
 - ➢ Fuel efficiency
 - > TCO
- Investigations of concepts that
 - are short-term technically feasible.
 - have an attractive payback period.
- Electrification of auxiliaries as technology built on robust and well-proven powertrain systems

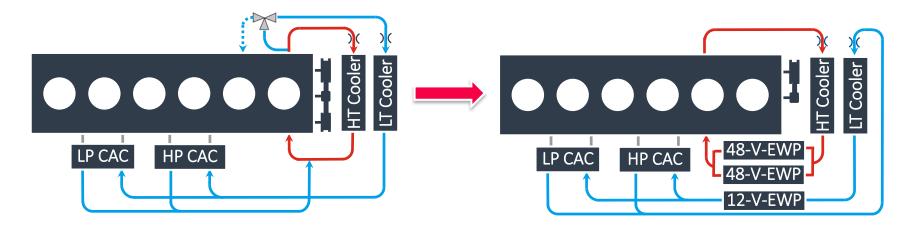


14.11.2018

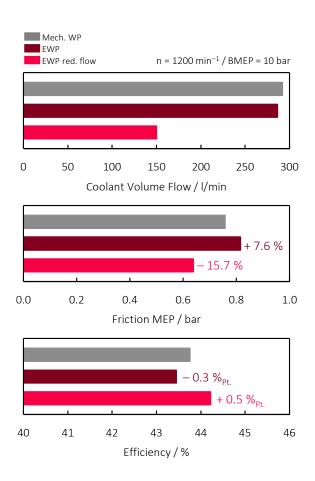
Electrification of Auxiliaries

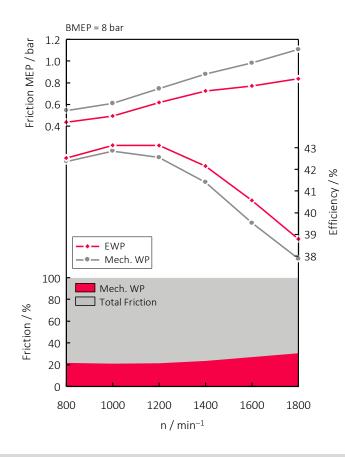
Water Pump

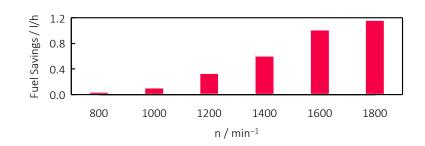
- Energy consumption of the auxiliaries is contained in the friction losses
- Rigid coupling of auxiliary drivetrain with belt-drive of engine → no variability in operating conditions
- Demand-controlled operation as key element to reduce parasitic losses
 - Decoupling of water pump speed from engine speed


- Water pump accounts for 21 % of friction losses at n = 1200 min⁻¹
- Maximum volume flow rate not necessary for part load operation

Engine Dynamometer

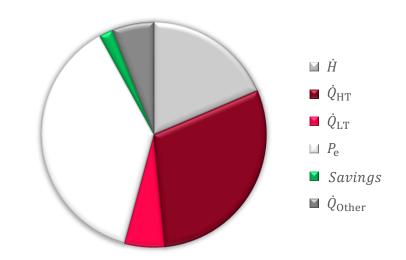

Electric Water Pump


Mechanical vs. Electric Water Pump $n = 1200 \text{ min}^{-1}, p_e = 10 \text{ bar}$

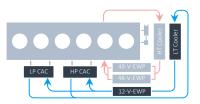

- Cooling system designed for worst case conditions
 - Low speed with full load and high ambient temperatures
 - Rated power at high ambient temperatures
- Unnecessary high flow rate for part-load operation due to rigid coupling to engine speed
- EWP offers full variability in operating speed
 - Demand-controlled coolant flow rate
- Operation at same conditions as mechanical WP is unfavourable
- Reduction of coolant flow rate

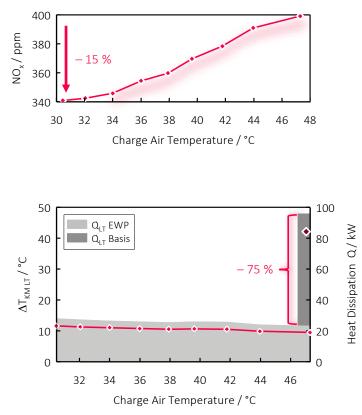
Mechanical vs. Electric Water Pump Speed Sweep $p_{\rm e} = 8$ bar

- Share of mechanical WP on total friction losses rises with speed
- Volume flow rate in EWP configuration is half of series value
- Reduction in friction losses up to 24 %
 - 0.9 %_{Pt.} benefit in brake thermal efficiency $\eta_{
 m e}$

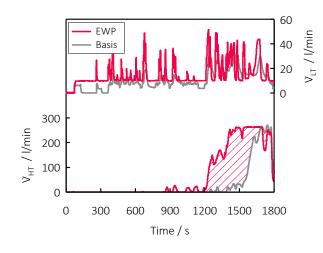


Separation of Cooling Circuits $n = 1800 \text{ min}^{-1}, p_e = 8 \text{ bar}$

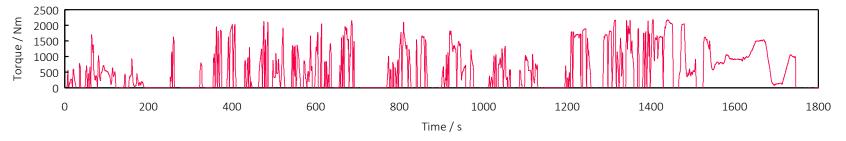

- Basis configuration with two linked cooling circuits
 - High temperature (HT) circuit as main cooling circuit
 - Low temperature (LT) circuit for charge air cooling


- Modified configuration with EWP and separated cooling circuits
 - One 12-V-EWP in LT circuit
 - Two 48-V-EWPs in HT circuit
- Total heat dissipation is equal
- > 2 % less fuel consumption

Low Temperature Circuit $n = 1800 \text{ min}^{-1}$, $p_e = 8 \text{ bar}$


- CAC integrated in low temperature (LT) circuit
- Basis configuration: LT and HT circuit mixed before LT outlet
 - Higher temperature spread over LT cooler
 - Maximum possible heat dissipation in LT cooler as limiting factor

Separation of cooling circuits leads to a 75 % reduced load of LT cooler


- Charge air temperature T_{CAC} can be decreased
- Reduction in temperature facilitates 15 % savings of NO_x engine-out emissions

Transient Operation

- Evaluation of warm-up behavior in WHTC
- Coolant flow in HT circuit represents opening of thermostats.
- Separation of cooling circuits leads to an elimination of support in heat dissipation of HT cooler.
 - > Coolant in HT circuit heats faster
 - Faster warm-up of engine

- A heavy-duty diesel engine has been set up on an engine dynamometer with electric water pumps.
- LT- and HT-circuit have been separated and operated with different EWPs.
- In the highway load point a benefit in η_e of 0.5 %_{Pt}, was obtained.
- Friction losses can be reduced by 24 % at rated speed.
- Heat dissipation is shifted from LT- to HT-cooler.
- Reduced thermal load in LT-cooler facilitates possibility to reduce charge air temperature level.
- Improved thermal management with regard to demand-controlled operation of EWP (faster warm-up in transient operation)

