

AVL List GmbH (Headquarters)

PEM Fuel Cell Powertrain

Which application makes sense – a study

Eco-Mobility 2018 November 13, 2018 Berg, Falko

AVL ENTERPRISE DEVELOPMENT

RESEARCH 10% of turnover in-house R&D

INNOVATION 1500 granted patents STAFF9.500 employees65% engineers and scientists

GLOBAL FOOTPRINT

- 30 engineering locations
- >220 testbeds

EXPERIENCE

70 years !

• Global customer support network

GROWTH

SALES 1995: 0.15 billion € 2017:

1.55 billion €

Plan 2018: 1.71 billion € **5** powertrain elements

ONE PARTNER

Fuel Cell Application

Motivation for Fuel Cell

Advantages of Fuel Cell Technology

Zero emissions

Fast refueling (~3 mins)

High system efficiency (~68%)

Silent

BEV vs. FCEV

BEV vs. FCEV

For larger & long range vehicles, FC Powertrain will be lower in cost than a comparable Battery Electric Vehicle (BEV) Powertrain

Modularity of Fuel Cell Systems

Modularity of PEM Fuel Cell Systems

Modularity of FC systems exists on system and powertrain level

System level

- FC systems are clustered in power ranges (e.g. 30 kW, 50 kW, 100 kW)
- Balance of Plant components are developed to meet requirements of these power ranges

Powertrain level

- Especially for high power applications
- Carry-over of FC system components from passenger cars for commercial vehicles
- Increased production volumes lower the overall manufacturing costs

AVL OF Customized High Performance PEM Fuel Cell System/ Engine **Upscale** Vehicle AVL70 KW Size (e.g. 120 kW) Train **HD Truck** Train **MD Truck MD Truck LD Truck LD Truck** Bus **City Bus** Passenger car Downscale Passenger Vehicle car (e.g. 30 kW) Size

Customized solution with reasonable development effort

Modularity of PEM Fuel Cell Systems – System Level

- Optimization of BoP components are optimized to meet requirements of dedicated power range
 - e.g. compressor development
 - Mass flows
 - Pressure ratio
 - Efficiency
- Carry-over of components between different power ranges is possible depending on stack operational characteristics
- Clustered components still allow FC system efficiencies close to ideal efficiency
 - CAE methods for component selection

AVL

Singular Fuel Cell system

300 kW

Power output Use cases Power density Weight Package space

Reliability

Lifetime / Durability

- No flexibility in power output
- Fewer use cases / commercial vehicle sizes
- Higher power density
- Lower weight
- Lower package space demand

High reliability

- Not fail-safe
- Low flexibility in operating strategies to achieve prolonged
 lifetime of the FC powertrain

Modular Fuel Cell system

100 kW

- · Flexible power output due to modularity
- Transferable to different commercial vehicle sizes and use cases
- Lower power density, depending on number of modules
- Higher, due to increased number of BoP components
- Higher package space might be required;
- Higher flexibility in packaging
- Higher reliability
- Fail-safe
- High freedom in operating strategies
- Prolonged lifetime
- · Homogenous distribution of load
- Shut-down of single modules
- Distribution of total operating hours

Modular 100 kW Fuel Cell System for Commercial Vehicles

The modular fuel cell system addresses due to its versatility many commercial use cases from LD to MD and HD application

Modular FC systems can address lifetime/durability targets of FCEV

Fuel cell lifetime/durability

- Cell degradation in the range of 5-25 μV/h (12-7.5 μV/h DOE & EU targets)
- In real world operation 2-4 times higher!
- Passenger car (PC) systems lose ~15% of power after 6.000 h
- PC fuel cell stacks in "battery charger operation" can reach ~15.000 h

Potential solutions for increased lifetime/durability

- Modular System Approach
- Range Extender Operation (low dynamics)
- Operation at low current density
- Operation with low dynamics (hybridization strategy)
- Regeneration cycles
- Improved stack design

—Beginning of Life —End of Life

Modular FC systems can address lifetime/durability targets of FCEV

Dynamics in FC systems

• A modular FC system allows to reduce dynamic from each module \rightarrow positive influence on stack lifetimes

Berg, Falko | PTE / DRF | 13 November 2018 | 16

Modular FC systems can address lifetime/durability targets of FCEV

Dynamics in FC systems

• A modular FC system allows to reduce dynamic from each module \rightarrow positive influence on stack lifetimes

Berg, Falko | PTE / DRF | 13 November 2018 | 17

Summary & Conclusion

Modularity of Fuel Cell Systems

- Powertrain level
 - Carry-over of FC system components from passenger cars for commercial vehicles
 - Increased production volumes lower the overall manufacturing costs
 - Modularity allows to target different use cases with same FC system technology
 - Modularity enable long lifetimes/durability needed for commercial vehicle application
- System level
 - FC systems are clustered in different power ranges (e.g. 35 kW, 55 kW, 100 kW)
 - Dedicated development of BoP components to these power ranges reduces overall development effort
 - FC system efficiency close to ideal efficiency can still be achieved

