

Sebastian Bock, Robert Zacharias, Karin Malli and Viktor Hacker

Institute of Chemical Engineering and Environmental Technology Graz University of Technology

SCIENCE PASSION TECHNOLOGY

A3PS Eco Mobility 2019, Vienna November 15, 2019

² Outline

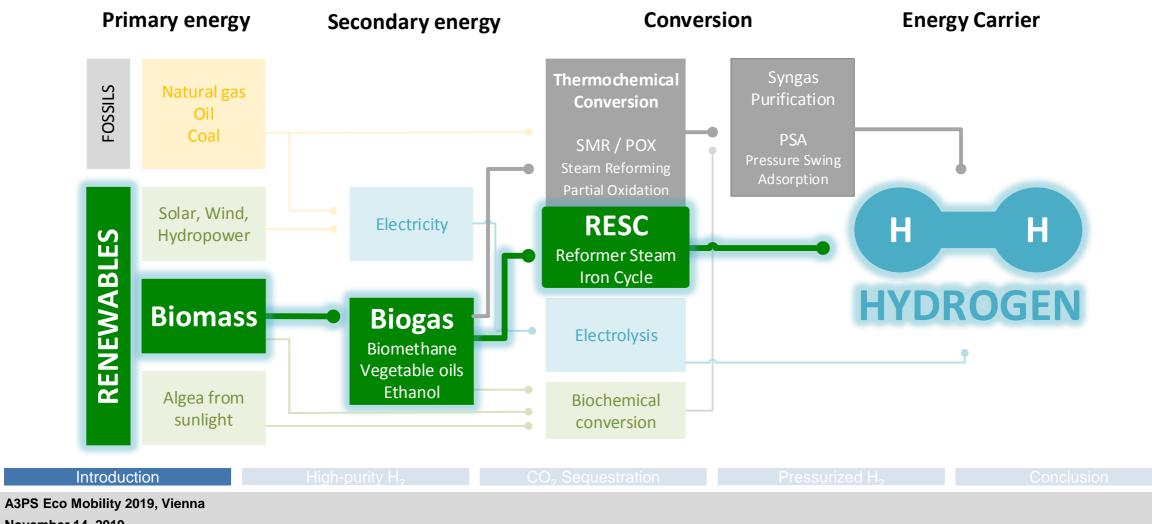
CEET

From the idea to implementation

High-purity hydrogen from renewables Advances in a 10 kW lab demonstration system

100 bar high-pressure hydrogen Pre-pressurized H₂ release

Conclusion and Outlook



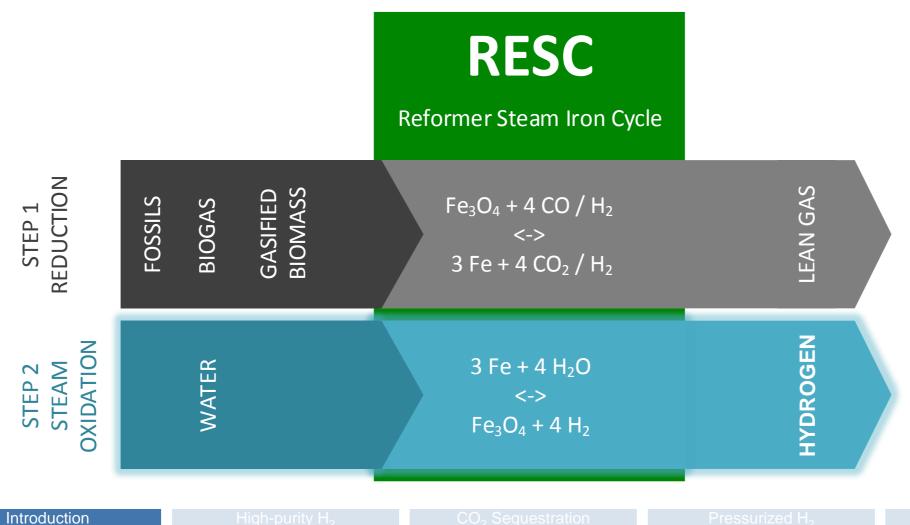
Introduction

CEET

3

RESC process in the context of hydrogen production pathways

November 14, 2019 © Graz University of Technology



Introduction

CEET

4

RESC process in the context of hydrogen production pathways

onclusion

A3PS Eco Mobility 2019, Vienna November 14, 2019 © Graz University of Technology

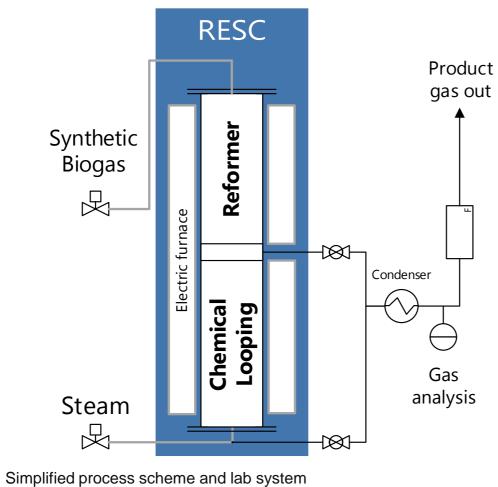
Outline

CEET

High-purity hydrogen from renewables Advances in a 10 kW lab system

100 bar high-pressure hydrogen Pre-pressurized H₂ release

Conclusion and Outlook



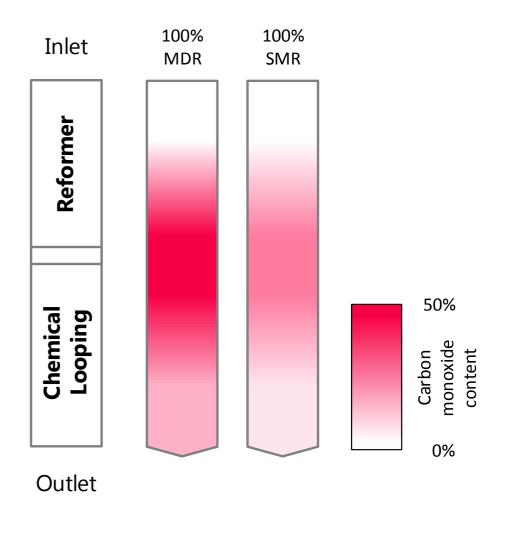
CEET

Advances in 10 kW lab system

Lab demonstration system

High-purity H₂

A3PS Eco Mobility 2019, Vienna November 14, 2019 © Graz University of Technology


7

Advances in a 10 kW lab system Hydrogen purity

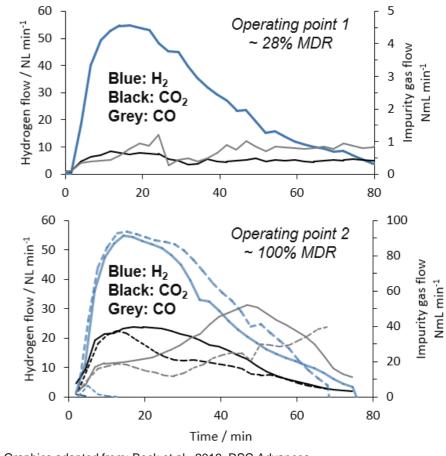
- Low S/C ratio for optimized performance
- MDR of biogenic feedstocks induces elevated carbon monoxide content
- Avoidance of low temperature areas in the system is crucial for hydrogen purity

Boudouard	$2 CO \rightarrow C + CO_2$	$\Delta H_{R,298} = 75 \ kJ \ mol^{-1}$
MDR	$CH_4 + CO_2 \rightarrow 2 CO + 2 H_2$	$\Delta H_{R,298} = 206 kJ mol^{-1}$
SMR	$CH_4 + H_2O \rightarrow CO + 3H_2$	$\Delta H_{R,298} = 247 \ kJ \ mol^{-1}$

High-purity H

MDR ratio <28%: Excellent hydrogen purity (>99.998%)

8


*

*

*

Advances in a 10 kW lab system Hydrogen purity

Hydrogen product gas stream in oxidation phase

	Ъ 10 - Н 0				
	0	20	40	60	
er purity	60 50 - 04 min 40 - 0 0 - 0 0 - 0 0 - 0	Blue: H ₂ Black: CO ₂ Grey: CO	~	erating point 100% MDF	
	0	20	40	60	
			Time / min		

phics adapted from: Bock et al., 2019, RSC Advances, 1:10.1039/C9RA03123E (CC BY 3.0)

MDR ratio behavior of		nydrogen	purity (>9	9.996%), unsteady	Grey: CO
MDR ratio (<99.98%)	100%: Signifi o	cant carb	on deposi	tion and lower purity	
Operating	Biogas	O/R	MDR		Elue: H ₂ Black: CO ₂
point	CH ₄ :CO ₂	ratio	ratio		
1	75:25	1 0	28%		30 - Grey: CO Grey: CO Mage 20 - Co Mage
2	45:55	1.2	100%		0
3	75:25	1.0	21%		0 20 40 Time / min
		1.6			

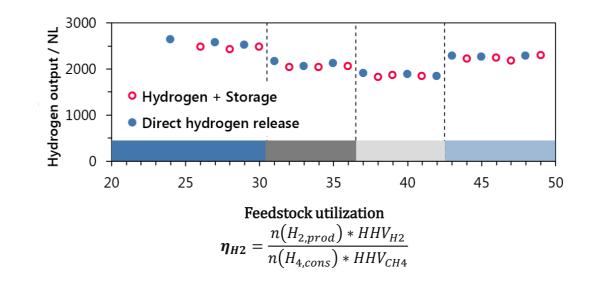
45:55	1.2	100%	1
75:25	16	21%	
45:55	1.0	1.6 76%	Grap DOI:
	High-purity H ₂		

A3PS Eco Mobility 2019, Vienna November 14, 2019 © Graz University of Technology

4

High-purity H

GEEI


9

Advances in a 10 kW lab system

Hydrogen storage and long-term experience

Excerpt of long-term test series

- Up to 60% feedstock utilization for high-purity H₂ - 99.999%
- 1000 hours time-on-stream, over one year of discontinuous operation
- Loss-free energy storage equal to 1000 bar PH₂
- On-time hydrogen generation
 e.g. for decentralized systems

Graphics adapted from: Bock et al., 2019, RSC Advances, DOI:10.1039/C9RA03123E (CC BY 3.0)

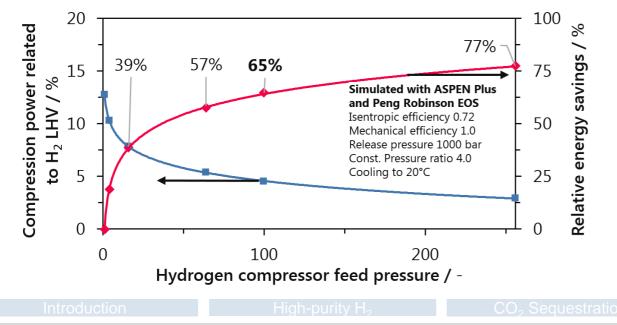
A3PS Eco Mobility 2019, Vienna November 14, 2019 © Graz University of Technology

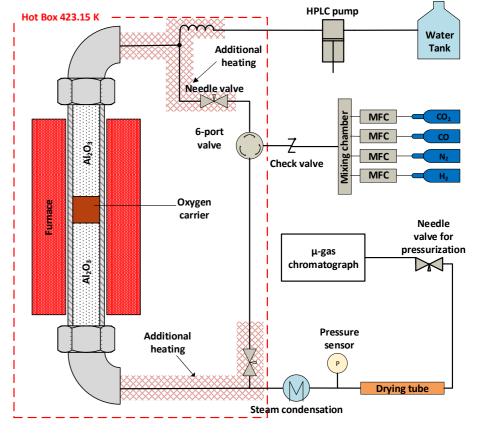
¹⁰ Outline

CEET

- High-purity hydrogen from renewables Advances in a 10 kW lab system
- 100 bar high-pressure hydrogen Pre-pressurized H₂ release

Conclusion and Outlook


ICEET 11

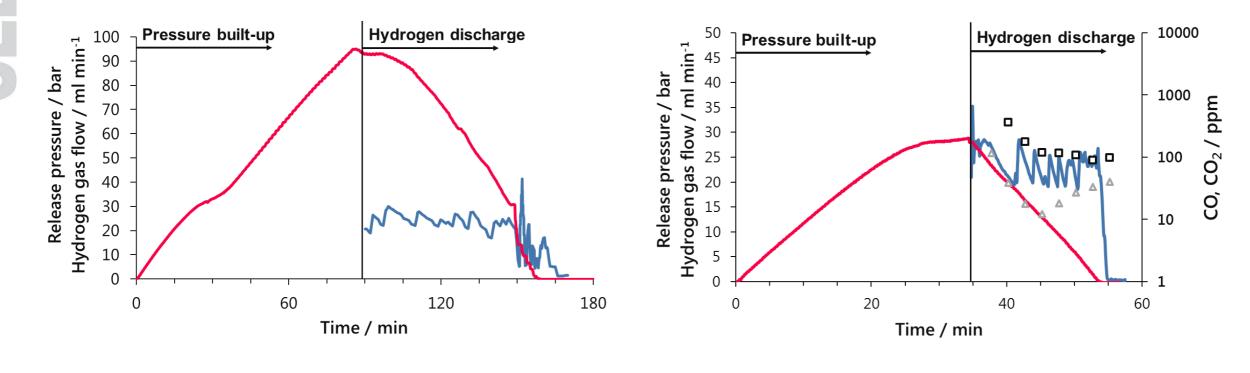

100 bar high-pressure hydrogen

Pre-pressurized H_2 release

System-integrated 100 bar pre-pressurized release * demonstrated in lab system by water feed liquid compression

* Significant energy savings for 1000 bar allocation

Graphics from: Zacharias et al., 2019, Int. J Hydrogen Energy, DOI:10.1016/j.ijhydene.2019.01.257 (CC BY-NC-ND 4.0)



100 bar high-pressure hydrogen

Pre-pressurized H_2 release

CEET

12

Hydrogen release after full reduction

Zacharias et al., 2019, Int. J Hydrogen Energy, DOI:10.1016/j.ijhydene.2019.01.257 (CC BY-NC-ND 4.0)

Hydrogen release after reduction with CO₂ sequestration

Pressurized H

Conclusion

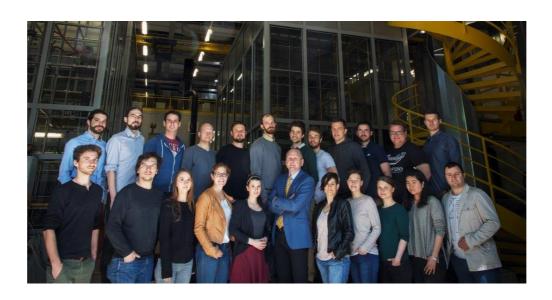
Conclusion

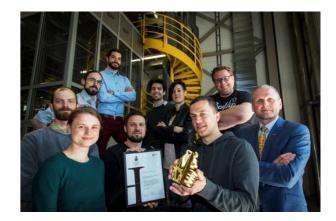
CEET

13

- Hydrogen from decentralized available resources for low-temperature fuel cells
 - High product gas purity (99.999%)
 - Feedstock utilization up to 60%
 - Zero- or negative carbon dioxide emissions with CCS/CCU
 - Loss-free energy storage
 - On-time hydrogen generation

Pressurized release at 100 bar demonstrated




¹⁴ Acknowledgements

CEET

Project partners and team

HOUSKA award 2017

State Prize Mobility 2017

Funding organizations

Federal Ministry Republic of Austria Sustainability and Tourism

15

Contact

DI Sebastian Bock, BSc

Working Group Fuel Cell and Hydrogen Systems Institute of Chemical Engineering and Environmental Technology Graz University of Technology

sebastian.bock@tugraz.at

Open Access: Bock, S., Zacharias, R., & Hacker, V. (2019). Experimental study on high-purity hydrogen generation from synthetic biogas in a 10 kW fixed-bed chemical looping system. *RSC Advances*, *9*(41), 23686–23695. <u>https://doi.org/10.1039/C9RA03123E</u>

Bock, S., Zacharias, R., & Hacker, V. (2018). High purity hydrogen production with a 10kWth RESC prototype system. *Energy Conversion and Management*, *172*(May), 418–427. <u>https://doi.org/10.1016/j.enconman.2018.07.020</u>

Open Access: Zacharias, R., Visentin, S., Bock, S., & Hacker, V. (2019). High-pressure hydrogen production with inherent sequestration of a pure carbon dioxide stream via fixed bed chemical looping. *International Journal of Hydrogen Energy*, *44*(16), 7943–7957. <u>https://doi.org/10.1016/j.ijhydene.2019.01.257</u>

Open Access: Nestl, S., Voitic, G., Zacharias, R., Bock, S., & Hacker, V. (2018). High-Purity Hydrogen Production with the Reformer Steam Iron Cycle. *Energy Technology*, *6*(3), 563–569. <u>https://doi.org/10.1002/ente.201700576</u>

Open Access: Voitic, G., Hacker, V., (2016). Recent advancements in chemical looping water splitting for the production of hydrogen. *RSC Advances*, *6*(100), 98267–98296. <u>https://doi.org/10.1039/C6RA21180A</u>

Open Access: Voitic, G., Nestl, S., Malli, K., Wagner, J., Bitschnau, B., Mautner, F. A., & Hacker, V. (2016). High purity pressurised hydrogen production from syngas by the steam-iron process. *RSC Advances*, *6*(58), 53533–53541. <u>https://doi.org/10.1039/c6ra06134f</u>

Sebastian Bock, Robert Zacharias, Karin Malli and Viktor Hacker

Institute of Chemical Engineering and Environmental Technology Graz University of Technology

SCIENCE PASSION TECHNOLOGY

A3PS Eco Mobility 2019, Vienna November 15, 2019

