HyStORM - sustainable, decentralized hydrogen generation and storage

Sebastian Bock, Robert Zacharias, Karin Malli and Viktor Hacker

Institute of Chemical Engineering and Environmental Technology
Graz University of Technology

http://ceet.tugraz.at/fuelcells
Outline

- **Introduction**
 From the idea to implementation

- High-purity hydrogen from renewables
 Advances in a 10 kW lab demonstration system

- 100 bar high-pressure hydrogen
 Pre-pressurized H_2 release

- Conclusion and Outlook
Introduction
RESC process in the context of hydrogen production pathways
Introduction

RESC process in the context of hydrogen production pathways

RESC
Reformer Steam Iron Cycle

\[
\begin{align*}
3 \text{Fe} + 4 \text{H}_2\text{O} & \rightleftharpoons \text{Fe}_3\text{O}_4 + 4 \text{H}_2 \\
\text{Fe}_3\text{O}_4 + 4 \text{CO} / \text{H}_2 & \rightleftharpoons 3 \text{Fe} + 4 \text{CO}_2 / \text{H}_2
\end{align*}
\]

Pure Hydrogen

WATER
BIOGAS
FOSSILS
LEAN GAS
GASIFIED
BIOMASS

STEP 1
REDUCTION

STEP 2
STEAM OXIDATION

HYDROGEN

Conclusion
Outline

- Introduction
 From the idea to implementation

- **High-purity hydrogen from renewables**
 Advances in a 10 kW lab system

- 100 bar high-pressure hydrogen
 Pre-pressurized H_2 release

- Conclusion and Outlook
Advances in 10 kW lab system
Lab demonstration system

High-purity Hydrogen from Biogas with a Combined Reformer and Fixed-Bed Chemical Looping System

Introduction
High-purity H_2
CO$_2$ Sequestration
Pressurized H_2
Conclusion

Simplified process scheme and lab system

Synthetic Biogas
Reformer
Chemical Looping
Electric furnace
Gas analysis
Condenser
Product gas out
Steam

Synthetic Biogas
Steam
Condenser
Gas analysis
Reformer
Chemical Looping
Electric furnace
Product gas out
Advances in a 10 kW lab system

Hydrogen purity

- Low S/C ratio for optimized performance
- MDR of biogenic feedstocks induces elevated carbon monoxide content
- Avoidance of low temperature areas in the system is crucial for hydrogen purity

<table>
<thead>
<tr>
<th>Process</th>
<th>Reaction</th>
<th>ΔH<sub>R,298</sub> (kJ mol<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boudouard</td>
<td>2 CO → C + CO<sub>2</sub></td>
<td>75</td>
</tr>
<tr>
<td>MDR</td>
<td>CH<sub>4</sub> + CO<sub>2</sub> → 2 CO + 2 H<sub>2</sub></td>
<td>206</td>
</tr>
<tr>
<td>SMR</td>
<td>CH<sub>4</sub> + H<sub>2</sub>O → CO + 3 H<sub>2</sub></td>
<td>247</td>
</tr>
</tbody>
</table>
Advances in a 10 kW lab system

Hydrogen purity

- MDR ratio <28%: Excellent hydrogen purity (>99.998%)
- MDR ratio ~76%: Good hydrogen purity (>99.996%), unsteady behavior of impurities
- MDR ratio 100%: Significant carbon deposition and lower purity (<99.98%)

<table>
<thead>
<tr>
<th>Operating point</th>
<th>Biogas CH₄:CO₂</th>
<th>O/R ratio</th>
<th>MDR ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75:25</td>
<td>1.2</td>
<td>28%</td>
</tr>
<tr>
<td>2</td>
<td>45:55</td>
<td>1.2</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>75:25</td>
<td>1.6</td>
<td>21%</td>
</tr>
<tr>
<td>4</td>
<td>45:55</td>
<td>1.6</td>
<td>76%</td>
</tr>
</tbody>
</table>

Hydrogen product gas stream in oxidation phase

Graphics adapted from: Bock et al., 2019, RSC Advances, DOI:10.1039/C9RA03123E (CC BY 3.0)
Advances in a 10 kW lab system
Hydrogen storage and long-term experience

- Up to 60% feedstock utilization for high-purity H₂ - 99.999%
- 1000 hours time-on-stream, over one year of discontinuous operation
- Loss-free energy storage equal to 1000 bar PH₂
- On-time hydrogen generation e.g. for decentralized systems

Excerpt of long-term test series

Introduction
High-purity H₂
CO₂ Sequestration
Pressurized H₂
Conclusion

Graphics adapted from: Bock et al., 2019, RSC Advances, DOI:10.1039/C9RA03123E (CC BY 3.0)
Outline

- **Introduction**
 From the idea to implementation

- **High-purity hydrogen from renewables**
 Advances in a 10 kW lab system

- **100 bar high-pressure hydrogen**
 Pre-pressurized H_2 release

- **Conclusion and Outlook**
100 bar high-pressure hydrogen

Pre-pressurized H_2 release

- System-integrated 100 bar pre-pressurized release demonstrated in lab system by water feed liquid compression

- Significant energy savings for 1000 bar allocation

100 bar high-pressure hydrogen
Pre-pressurized H_2 release

Hydrogen release after full reduction

Hydrogen release after reduction with CO_2 sequestration

Zacharias et al., 2019, Int. J Hydrogen Energy, DOI:10.1016/j.ijhydene.2019.01.257 (CC BY-NC-ND 4.0)
Conclusion

- **Hydrogen from decentralized available resources** for low-temperature fuel cells
- **High product gas purity (99.999%)**
- **Feedstock utilization up to 60%**
- **Zero- or negative carbon dioxide emissions** with CCS/CCU
- **Loss-free energy storage**
- **On-time hydrogen generation**

- **Pressurized release at 100 bar** demonstrated
Acknowledgements

Project partners and team

Funding organizations

HOUSKA award 2017
State Prize Mobility 2017
High-Purity Hydrogen from Biogas with a Combined Reformer and Fixed-Bed Chemical Looping System

Contact

DI Sebastian Bock, BSc
Working Group Fuel Cell and Hydrogen Systems
Institute of Chemical Engineering and Environmental Technology
Graz University of Technology
sebastian.bock@tugraz.at

HyStORM - sustainable, decentralized hydrogen generation and storage

Sebastian Bock, Robert Zacharias, Karin Malli and Viktor Hacker

Institute of Chemical Engineering and Environmental Technology
Graz University of Technology

http://ceet.tugraz.at/fuelcells