14th International A3PS Conference Eco-Mobility 2019 14.-15. November 2019, GIRONCOLI-Kristall | STRABAG Art Forum, Vienna

Charging infrastructure for electric vehicles: demand, cost and impact on the energy supply in Austria by 2030

Institut für Fahrzeugantriebe & Automobiltechnik

DI Thomas Bruckmüller

DI Dr. Werner Tober DI Dominik Fasthuber

Institut für Fahrzeugantriebe & Automobiltechnik

Content

$\hfill\square$ Motivation and aim

- □ Methodology
- □ Input data and assumptions
- □ Results
- □ Summary

Motivation

- □ The improvement of **air quality** and **climate protection** is <u>the</u> motivation for **legal regulations** to reduce pollutant (**Euro classes**) and greenhouse gas emissions (CO_2 fleet consumption).
- Electromobility is understood as one of the solutions and requires appropriate market penetration.
- □ However, this also requires a **sufficient charging infrastructure**.

14th International A3PS Conference Eco-Mobility 2019 Charging infrastructure for electric vehicles: demand, cost and impact on the energy supply in Austria by 2030 14.11.2019 | Vienna | T. Bruckmüller | Slide 3

Aim

Tool-based identification of the required charging infrastructure and its impact on energy supply by 2030 in Austria.

- \Box Key questions:
 - **How many** charging points are needed?
 - When are these required?
 - Where are they needed?
 - Which charging power should be installed?
 - What costs can be expected for the construction of the infrastructure?
 - What effects are there on the grid?
- □ This results in the main topics:
 - Forecast of **new registrations and fleet** of pure battery electric vehicles
 - Analysis of mobility behavior
 - Derivation of the **number of charging points** per **charging power** and their **distribution** (city/country-side)
 - Determination of the additional electrical power and energy requirements for e-mobility
 - **Costs** for the construction of charging infrastructure
 - Impact on local grids

Methodology

New registrations and fleet development

- □ Based on an expert assessment regarding the development of new registrations of pure electric vehicles up to 2030, 26 % new passenger cars (PC) and 16 % new light duty truck (LDT) registrations are expected in 2030 in Austria.
- □ This leads to a stock of 11 % passenger cars (PC) and 6,5 % light duty truck (LDT) of pure electric vehicles in 2030.

Ref.: Geringer, B., Eichlseder, H.: ÖAMTC Expertenbericht Mobilität und Klimaschutz 2030, Wien: ÖAMTC, 2018 (for PC)

14th International A3PS Conference Eco-Mobility 2019 Charging infrastructure for electric vehicles: demand, cost and impact on the energy supply in Austria by 2030 14.11.2019 | Vienna | T. Bruckmüller | Slide 6

Methodology

Mobility behavior

to define the charging behavior by time and duration

- □ A highly detailed austrian-wide **survey on individual mobility behavior** was used.
- □ Main data of a single trip
 - arrival time
 - trip length
 - weighting factor
- \Box Differentiated according \rightarrow
- □ Assumption:
 - charging after every trip

Ref.: Tomschy, R., Herry, M. et al: Ergebnisbericht zur österreichweiten Mobilitätserhebung "Österreich unterwegs 2013/2014", Wien: Bundesministerium für Verkehr, Innovation und Technologie (Hrsg.), Juni 2016

14th International A3PS Conference Eco-Mobility 2019 Charging infrastructure for electric vehicles: demand, cost and impact on the energy supply in Austria by 2030 14.11.2019 | Vienna | T. Bruckmüller | Slide 8

Charging behavior

Assumption for the distribution of charging power according to place of charging

Expected charging power for PC Home, PC Destination and LDT Home

Calculation scheme

to determine the simultaneity and load profile

- □ Based on the input data and assumptions shown above, the simultaneity and load profile were calculated, respecting
 - 93.000 different single trips; statistically recorded
 - an average yearly mileage of 12.900 km (PC) and 18.600 km (LDT)
 - an average energy consumption of 25,6 kWh/100km (PC) and 55 kWh/100km (LDT)

14th International A3PS Conference Eco-Mobility 2019 Charging infrastructure for electric vehicles: demand, cost and impact on the energy supply in Austria by 2030 14.11.2019 | Vienna | T. Bruckmüller | Slide 10

& Automobiltechni

Charging power demand for pure electric vehicles (PC and LDT) in 2030 Maximum power in calendar week 3

- Energy demand: 2,23 TWh (equals 3,2 % of the energy demand in 2018)
- □ Maximum power demand: **1,1 GW** (equals **10,8** % of power demand in 2018)

Required number of charging stations until 2030

Distribution according to place of loading

- □ By 2030, Austria will require 857.000 charging points for 623.000 PC and LDT.
- □ This corresponds to **1,38 charging points per vehicle**.
- □ 39 % of them in public space.

14th International A3PS Conference Eco-Mobility 2019

Charging infrastructure for electric vehicles: demand, cost and impact on the energy supply in Austria by 2030 14.11.2019 | Vienna | T. Bruckmüller | Slide 12

Costs for the construction of charging stations until 2030

Distribution according to charging power

- □ Cost estimate of various energy provider and operators.
- □ Consideration of the costs of:
 - Hardware
 - Grid fees
 - Building measures
- □ Distinction according to:
 - Charging power (2,3 50 kW)
 - Loading location (urban / rural)
 - Loading type (roadside/parking space)
- □ In total **6,1 Mrd. € until 2030**.
- □ This corresponds to **9.800 €/vehicle** in the scenario described.

Methodology

Impact on the grid

Consideration of various local grid models

- $\hfill\square$ Considering a model for a
 - Rural grid (59 households)
 - Small town grid (87 households)
 - Metropolitan grid (168 households)
- □ Random distribution of the required charging points in the grid model
- □ Using the calculated load profile
- Determining the impact on the local grid
- □ Derivation of possible corrective measures

Impact on the grid Results by 2030

- □ In the analyzed rural, small town and metropolitan grids, there has been **no inadmissible resource utilization and voltage range deviations occurred**.
- □ The grid models considered in the study **reach their limits** at a fleet share of
 - Rural grid: 30 % PC and 18 % LDT pure electric vehicles
 - Small town grid: 56 % PC and 33 % LDT pure electric vehicles
 - Metropolitan grid: 48 % PC and 28 % LDT pure electric vehicles
- □ The limits of the considered grids are achieved by the maximum utilization of the transformers and not by voltage band violations or line overloads.
- In unfavorable cases (e.g. old or higher loaded grids) an inadmissible operation can not be excluded even before 2030.
- Due to the long planning phases in grid expansion, the start of extensions for higher fleet shares of pure electric vehicles may already be appropriate before 2030.
- To **protect the grid** in a first step, **intelligent charging management** (e.g. smart meter) controls the charging power (e.g. P_{max} , $P_{(U)}$) and/or the charging time (start, end, duration).

Summary

□ With the methodology developed, a tool was created to assess the requirements and consequences of electromobility with regard to the charging infrastructure and energy supply of a country under free selectable boundary conditions.

Based on the parameters shown, for Austria in 2030:

- □ Pure electric vehicle stock of 11 % passenger cars (PC) and 6,5 % light duty truck (LDT).
- □ For most journeys, **low charging power is sufficient**.
- □ The **additional annual energy demand** amounts to **3,2 %** of the energy demand in 2018.
- □ The additional power requirement amounts to **10,8 %** of the maximum power level in 2018.
- □ 857.000 charging points for 623.000 PC and LDT needed.
- □ The construction of **charging infrastructure** will incur cumulated **costs** of **6,1 Mrd. €** or 9.800 €/vehicle
- □ The analyzed grids show **no problems with inadmissible resource utilization and voltage range deviations**.

Thank you for your attention!

Institut für Fahrzeugantriebe & Automobiltechnik