

a lightweight and affordable 48V urban vehicle

By Martin Gossar

Thanks to: Wolfgang Kriegler, UAS/FH Joanneum , Thomas Lechner, UAS/FH Joanneum Dietmar Hofer, Magna Steyr, Henning Sommer, Magna Steyr

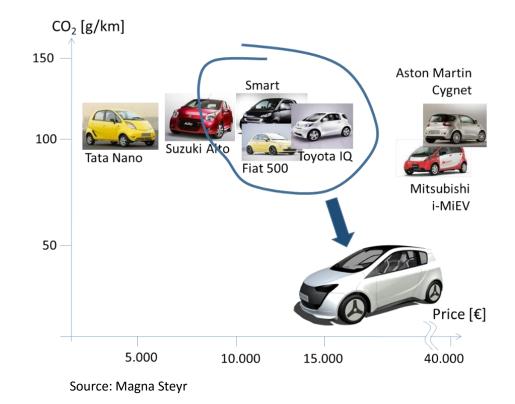
ECO-Mobility 2019 Vienna, Austria 11th November 2019

eCULT

a lightweight and affordable 48V urban vehicle

Content

- **CULT & eCULT Project**
- **CULT weight reduction**
- **CULT & eCULT powertrains**
- Energy Consumption & Driving performance
- Life Cycle Assessment
- **Summary and conclusions**



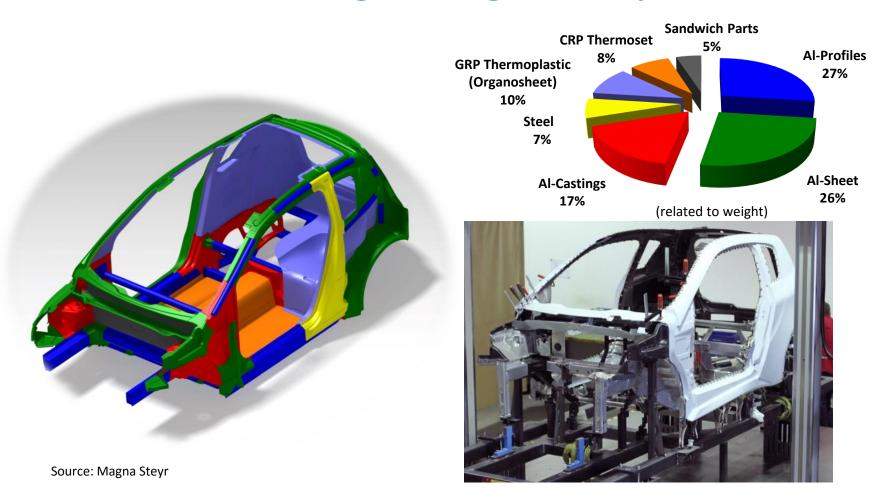
CULT FH JOANNEUM boundaries and targets

Basic CULT project targets

(Magna Steyr)

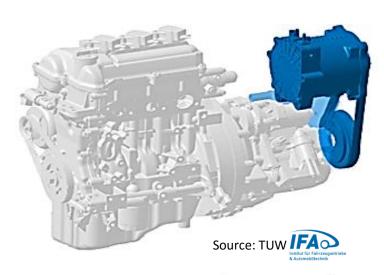
- **CNG** powertrain ٠
- Best in class fuel **consumption** ٠ lowest CO₂ emissions
- Lightweight chassis design •
- Affordable vehicle .
- **Acceleration** as benchmark
- Top speed adequate for usage on motorway
- Premium look and feel .
- Safety as benchmark ٠
- **Comfort** as benchmark .
- **Range** of 400km (using CNG powertrain) ٠
- Production ~ 30.000 **units** per year

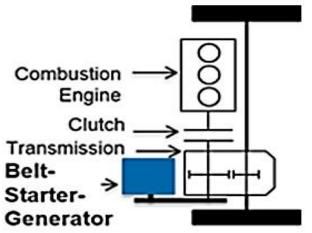
University of Applied Sciences


Relentless light weight design for best in class CO₂ - emissions

CULT vehicle FH JOANNEUM Iniversity of Applied Sciences

CULT vehicle lightweight body





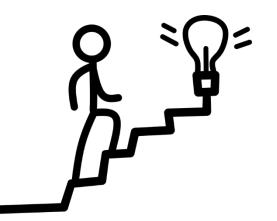
Multi material light weight design body with 147 kg, doors & closures 62 kg

CULT vehicle CNG powertrain

Concept: only the combination of powertrain solutions and lightweight design leads to best possible CO₂ reduction

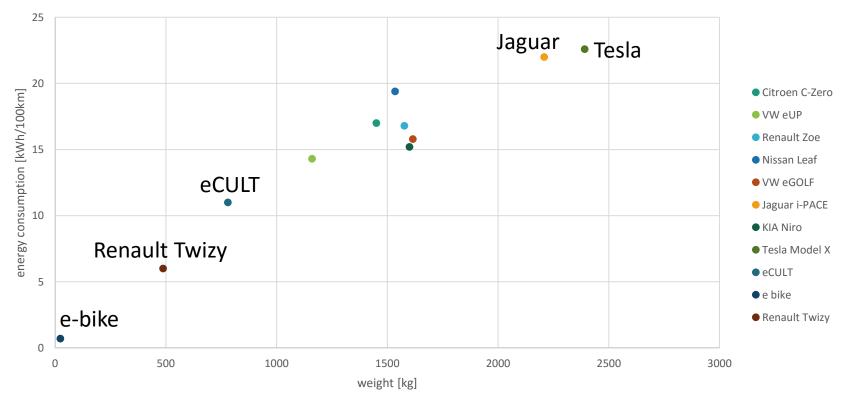
Key components:

- 3-Cylinder direct injection 660cm3 CNG engine
- AMT automated manual transmission (Smart)
- Belt-starter-generator linked with transmission input shaft


Hybrid functions supported:

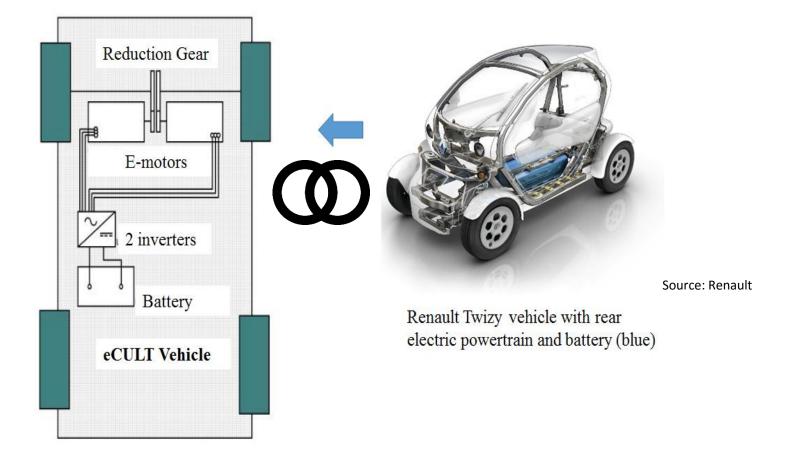
- Stop & Go
- Generator management & Recuperation
- Boosting
- Electrical driving at low speeds

eCULT project FH JO boundaries and targets

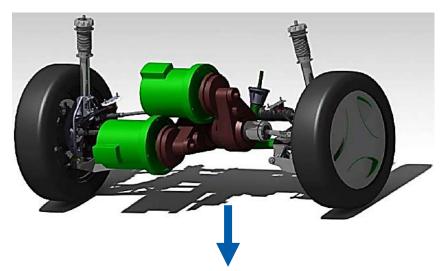

- Student project involving vehicle engineering dept. in FH/UAS Graz
- Gaining **practice** in EVs
- Learn the outcome of the combination of a super light weight vehicle and an electrified powertrain
- Identify the optimization potential of each component
- Develop further researches

A student project for gaining experience with electric powertrains

eCULT FH JOANNEUM University of Applied Sciences energy consumption comparison


energy consumption vs. weight

Weight defines directly the energy consumption -> emissions


eCULT vehicle FH JOANNEUM electric powertrain architecture

FNGINFFRING

Performance goals, availability and costs as main drivers for the decisions made

eCULT vehicle FH JOANNEUM University of Applied Sciences electric powertrain architecture

FNGINFFRING

Virtual model showing in green the two 48V motors

Real engine compartment with an entwined arrangement due to preferred direction of the transmissions

eCULT vehicle FH JOANNEUM University of Applied Sciences electric powertrain components

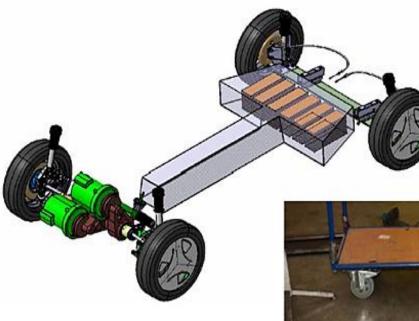
70 Nm

Source: Metron, Mahle, Comex

Standard components provided by Mahle: **two engines** are adopted to obtain the required performance, and **testing** is performed both on track and on test benches

2000 rpm

1:7,13



15 kW

FNGINFFRING

eCULT vehicle FH JOANNEUM University of Applied Sciences electric powertrain battery

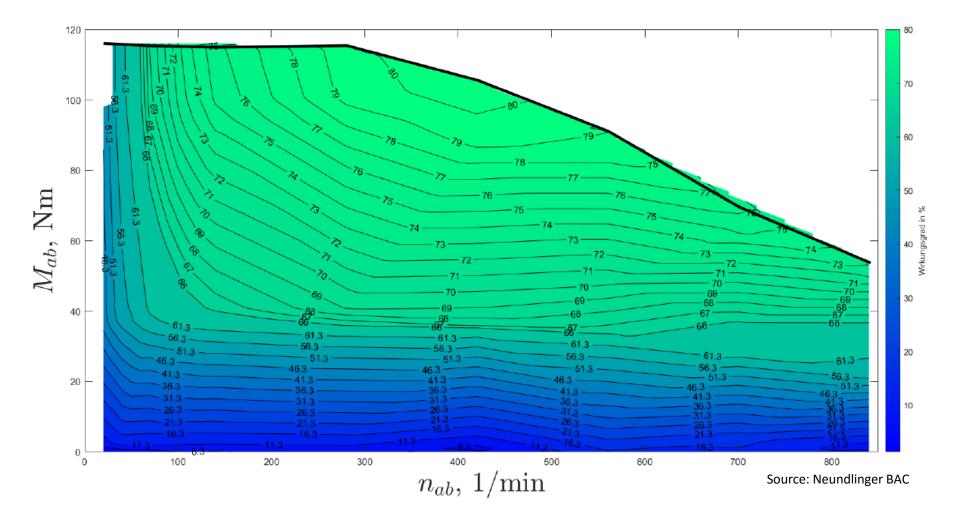
Battery specifications:

- 84 Cells / (70kg Cells) 118 kg
- o LG Li-Ion 60 Ah
- 14s6p configuration
- Battery integrated below rear seats
- BMS, switches, fuses, charger and DC/DC integrated in tunnel

eCULT vehicle powertrain comparison

	ICE Powertrain		Electrical Powertrain	
	3-cylinder CNG ice engine		Asynchronous eMotors	
Engine	Displacement	658 cm ³	Inverter	48 V / 400 A
	Mixture formation	Direct injection		
	Power max.	47 kW (@ 5000 rpm)	Power max.	2 x 15 kW
	Torque max.	103 Nm (@ 2500 rpm)	Torque max.	2 x 70 Nm
Transmission	Automated transmission		Reduction gear	Comex
	Gears	6	Ratio	7,13
	Dry slump lubrication		Blocked differential	
	Electrical oil pump		No oil pump	
Energy Storage	CNG Type 4 Carbon fiber high pressure vessel	50 l, 8 kg CH ₄ at 200 bar	60 Ah LG Li-Ion 84 Cells 14s6p	18 kWh
			Available net capacity	16 kWh
Electrical Components	Belt-Starter-Generator	12 V		
	Power max. generating	2,8 kW	DC/DC converter	13,8 V / 50 A _m
	Power max motoring	1,4 kW	On-board charger	48 V / 25 A
	Voltage electrical system	12 V	Voltage level	12 V / 48 V
	On-board battery	12 V / 38 Ah	On-board battery	12 V / 38 Ah

eCULT vehicle



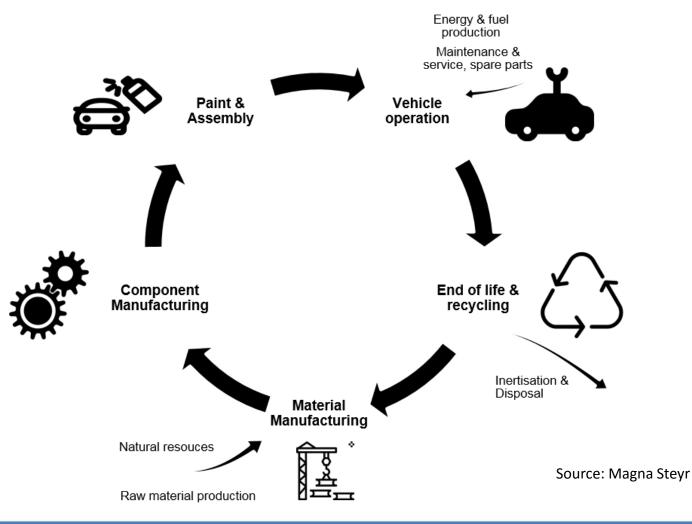
powertrain performance comparison

	ICE Powertrain		Electric Powertrain
Max. Speed	km/h	130	112
Accelerations	0 - 30 km/h	4 s * with corrected, real shifting intervals	3,1 s
Accelerations	0 - 50 km/h	8 s*	6,2 s
	0 - 70 km/h	11 s*	11,8 s
	0 - 80 km/h	12 s*	14,09 s
Elasticity	30 – 50	4 s*	3,4 s
	30 – 70	6 s*	8,1 s
	30 – 80	8 s*	11,9 s
	8 kg CNG	> 300 km	
Range (City / NEDC)	16 kWh net capacity		~ 150 km
Empirical evaluation		long torque interrupts during shifting (1 st Gen. AMT!)	very smooth acceleration
Energy consumption	2,8 kg CNG	both in real drive	11 kWh

City driving performance is improved with the eCULT

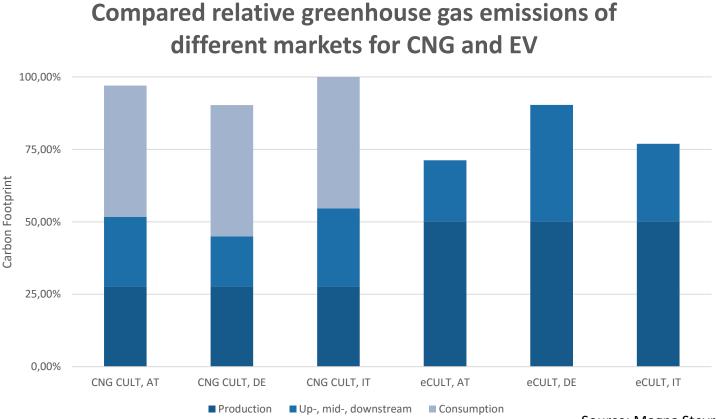
eCULT vehicle FH JOANNEUM University of Applied Sciences Power efficiency of motor and gearbox

ENGINEERING


eCULT vehicle

Operational profile and energy consumption

	CNG CULT	eCULT
Functional Unit	1,4 person passenger transport	1,4 person passenger transport
Mileage	150.000 km	150.000 km
Curb weight	680 kg	780 kg
Energy consumption	2,16 kg CNG/100 km (NEDC) / 2,8 kg CNG in real drive	8,5 kWh/100 km (NEDC) / 11 kWh/100 km in real drive
Markets	AT/DE/IT	AT/DE/IT


eCULT vehicle FH JOANNEUM Life Cycle Assessment (LCA)

Standardised & scientific evaluation of vehicle's carbon footprint based on ISO 14040

FH JOANNEUM eCULT vehicle Life Cycle Assessment

eCULT can achieve up to ~ 30% better CO₂ foot print compared to its CNG brother (Austria)

Source: Magna Steyr

University of Applied Sciences

eCULT vehicle FH JOANNEUM University of Applied Sciences Summary and conclusions

• Electric powertrain key figures

- $\,\circ\,$ two 48 V drive units, one for each front wheel, providing 2x 15 kW/70 Nm
- $\circ~$ 18 kWh battery over the rear axle and under the rear seats
- $\,\circ\,$ BMS, onboard charger, DC/DC converter and on board 12 V battery installed in tunnel

Real life behavior comparison

- o similar and adequate city performance (acceleration and drivability)
- $\circ\,$ fluid and continuous speed progression of the eCULT is preferred over the AMT gearbox on the CNG version
- $\circ~$ the range of the eCULT is roughly half of the range of its CNG precursor

Importance of energy mix and powertrain concept

- $\circ~$ original CNG CULT (680 kg) produced ~60 g CO_2/km NEDC (TtW)+ upstream 35 g/km (WtT) results in total 95 g CO_2/km (WtW)
- \circ eCULT results in < 60 g CO₂/km (WtW) based on worst case German electricity market mix (at low voltage grid)

Overall LCA results

- $\circ~$ best carbon footprint experienced with eCULT and Austrian electricity mix
- $\circ\;$ advantages for e-mobility due to high potentials in production efficiency
- the "right vehicle concept" is defined by: market, market's energy mix, origin of resources

FH JOANNEUM

Thank you for your attention!