eCULT

a lightweight and affordable 48V urban vehicle

By Martin Gossar

Thanks to: Wolfgang Kriegler, UAS/FH Joanneum, Thomas Lechner, UAS/FH Joanneum, Dietmar Hofer, Magna Steyr, Henning Sommer, Magna Steyr

ECO-Mobility 2019
Vienna, Austria
11th November 2019
Content

CULT & eCULT Project
CULT – weight reduction
CULT & eCULT - powertrains
Energy Consumption & Driving performance
Life Cycle Assessment
Summary and conclusions
Basic CULT project targets

(Magna Steyr)

- **CNG** powertrain
- Best in class fuel consumption – lowest CO₂ emissions
- **Lightweight chassis** design
- **Affordable** vehicle
- **Acceleration** as benchmark
- **Top speed** adequate for usage on motorway
- **Premium look and feel**
- **Safety** as benchmark
- **Comfort** as benchmark
- **Range** of 400km (using CNG powertrain)
- Production ~ 30,000 units per year

Relentless light weight design for best in class CO₂ - emissions
CULT vehicle
holistic weight reduction approach

Weight reduction strategies

- **Integration of functions**
 (cancellation of parts)

- **New materials**
 (selective use of lightweight materials)

- **Downsizing**
 (& use of secondary effects)

Base 900 kg

Target weight
600 kg

Target weight achieved: 680 kg

Engine: 660 cm³

Source: Magna Steyr
CULT vehicle
lightweight body

Source: Magna Steyr

Multi material light weight design body with 147 kg, doors & closures 62 kg
CULT vehicle
CNG powertrain

Concept: only the combination of powertrain solutions and lightweight design leads to best possible CO₂ reduction

Key components:
- 3-Cylinder direct injection 660cm³ CNG engine
- AMT automated manual transmission (Smart)
- Belt-starter-generator linked with transmission input shaft

Hybrid functions supported:
- Stop & Go
- Generator management & Recuperation
- Boosting
- Electrical driving at low speeds
New eCULT project at UAS FH Joanneum with additional targets:

- **Student project** – involving vehicle engineering dept. in FH/UAS Graz
- Gaining **practice** in EVs
- Learn the outcome of the **combination of a super light weight vehicle and an electrified powertrain**
- Identify the **optimization potential** of each component
- Develop further researches

A student project for gaining experience with electric powertrains

Weight defines directly the energy consumption -> emissions
eCULT vehicle

electric powertrain architecture

Performance goals, availability and costs as main drivers for the decisions made

Renault Twizy vehicle with rear electric powertrain and battery (blue)

Source: Renault
eCULT vehicle

electric powertrain architecture

Virtual model showing in green the two 48V motors

Real engine compartment with an entwined arrangement due to preferred direction of the transmissions
Standard components provided by Mahle: **two engines** are adopted to obtain the required performance, and **testing** is performed both on track and on test benches.
Battery specifications:

- 84 Cells / (70kg Cells) 118 kg
- LG Li-Ion 60 Ah
- 14s6p configuration
- Battery integrated below rear seats
- BMS, switches, fuses, charger and DC/DC integrated in tunnel
<table>
<thead>
<tr>
<th></th>
<th>ICE Powertrain</th>
<th>Electrical Powertrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>3-cylinder CNG ice engine</td>
<td>Asynchronous eMotors</td>
</tr>
<tr>
<td></td>
<td>Displacement 658 cm³</td>
<td>Inverter 48 V / 400 A</td>
</tr>
<tr>
<td></td>
<td>Mixture formation Direct injection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power max. 47 kW (@ 5000 rpm)</td>
<td>Power max. 2 x 15 kW</td>
</tr>
<tr>
<td></td>
<td>Torque max. 103 Nm (@ 2500 rpm)</td>
<td>Torque max. 2 x 70 Nm</td>
</tr>
<tr>
<td>Transmission</td>
<td>Automated transmission</td>
<td>Reduction gear Comex</td>
</tr>
<tr>
<td></td>
<td>Gears 6</td>
<td>Ratio 7,13</td>
</tr>
<tr>
<td></td>
<td>Dry slump lubrication</td>
<td>Blocked differential</td>
</tr>
<tr>
<td></td>
<td>Electrical oil pump</td>
<td>No oil pump</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>CNG Type 4 Carbon fiber high pressure vessel 50 l, 8 kg CH₄ at 200 bar</td>
<td>60 Ah LG Li-Ion 84 Cells 14s6p 18 kWh</td>
</tr>
<tr>
<td></td>
<td>Available net capacity</td>
<td></td>
</tr>
<tr>
<td>Electrical Components</td>
<td>Belt- Starter-Generator 12 V</td>
<td>DC/DC converter 13,8 V / 50 A_m</td>
</tr>
<tr>
<td></td>
<td>Power max. generating 2,8 kW</td>
<td>On-board charger 48 V / 25 A</td>
</tr>
<tr>
<td></td>
<td>Power max motoring 1,4 kW</td>
<td>Voltage level 12 V / 48 V</td>
</tr>
<tr>
<td></td>
<td>Voltage electrical system 12 V</td>
<td>On-board battery 12 V / 38 Ah</td>
</tr>
<tr>
<td></td>
<td>On-board battery 12 V / 38 Ah</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICE Powertrain</td>
<td>Electric Powertrain</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Max. Speed</td>
<td>km/h</td>
<td>130</td>
</tr>
<tr>
<td>Accelerations</td>
<td>0 - 30 km/h</td>
<td>4 s * with corrected, real shifting intervals</td>
</tr>
<tr>
<td></td>
<td>0 - 50 km/h</td>
<td>8 s *</td>
</tr>
<tr>
<td></td>
<td>0 - 70 km/h</td>
<td>11 s *</td>
</tr>
<tr>
<td></td>
<td>0 - 80 km/h</td>
<td>12 s *</td>
</tr>
<tr>
<td>Elasticity</td>
<td>30 – 50</td>
<td>4 s *</td>
</tr>
<tr>
<td></td>
<td>30 – 70</td>
<td>6 s *</td>
</tr>
<tr>
<td></td>
<td>30 – 80</td>
<td>8 s *</td>
</tr>
<tr>
<td>Range (City / NEDC)</td>
<td>8 kg CNG</td>
<td>> 300 km</td>
</tr>
<tr>
<td></td>
<td>16 kWh net capacity</td>
<td></td>
</tr>
<tr>
<td>Empirical evaluation</td>
<td>long torque interrupts during shifting (1st Gen. AMT!)</td>
<td>very smooth acceleration</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>2,8 kg CNG</td>
<td>both in real drive</td>
</tr>
</tbody>
</table>

City driving performance is improved with the eCULT
eCULT vehicle
Power efficiency of motor and gearbox

Source: Neundlinger BAC
eCULT vehicle

Operational profile and energy consumption

<table>
<thead>
<tr>
<th></th>
<th>CNG CULT</th>
<th>eCULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Unit</td>
<td>1,4 person passenger transport</td>
<td>1,4 person passenger transport</td>
</tr>
<tr>
<td>Mileage</td>
<td>150,000 km</td>
<td>150,000 km</td>
</tr>
<tr>
<td>Curb weight</td>
<td>680 kg</td>
<td>780 kg</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>2,16 kg CNG/100 km (NEDC) / 2,8 kg CNG in real drive</td>
<td>8,5 kWh/100 km (NEDC) / 11 kWh/100 km in real drive</td>
</tr>
<tr>
<td>Markets</td>
<td>AT/DE/IT</td>
<td>AT/DE/IT</td>
</tr>
</tbody>
</table>

AT... Austria, DE... Germany, IT... Italy
Standardised & scientific evaluation of vehicle’s carbon footprint based on ISO 14040
eCULT can achieve up to ~ 30% better CO₂ footprint compared to its CNG brother (Austria)

Compared relative greenhouse gas emissions of different markets for CNG and EV

Source: Magna Steyr
eCULT vehicle
Summary and conclusions

• Electric powertrain key figures
 o two 48 V drive units, one for each front wheel, providing 2 x 15 kW/70 Nm
 o 18 kWh battery over the rear axle and under the rear seats
 o BMS, onboard charger, DC/DC converter and on board 12 V battery installed in tunnel

• Real life behavior comparison
 o similar and adequate city performance (acceleration and drivability)
 o fluid and continuous speed progression of the eCULT is preferred over the AMT gearbox on the CNG version
 o the range of the eCULT is roughly half of the range of its CNG precursor

• Importance of energy mix and powertrain concept
 o original CNG CULT (680 kg) produced ~60 g CO₂/km NEDC (TtW)+ upstream 35 g/km (WtT) results in total 95 g CO₂/km (WtW)
 o eCULT results in < 60 g CO₂/km (WtW) based on worst case German electricity market mix (at low voltage grid)

• Overall LCA results
 o best carbon footprint experienced with eCULT and Austrian electricity mix
 o advantages for e-mobility due to high potentials in production efficiency
 o the “right vehicle concept” is defined by: market, market’s energy mix, origin of resources
Thank you for your attention!