

Components and Systems for Next Generation EVs

Sys2Wheel – Project summary & highlights, HiPE – Project introduction Alois Steiner, Christian Doppler, Bernhard Brandstätter

A3PS, Eco-Mobility 2022, 24.11.2022

www.v2c2.at

Integrated components, systems and architectures for efficient adaption and conversion of commercial vehicle platforms to 3rd generation BEVs for future CO2-free city logistics

Sys2Wheel – Project summary & highlights

Overall project introduction

Cost efficient, scalable electric drivetrains for commercial vehicles (N1 and N2) consisting of...

- Electric axle
- In wheel-motors
- Advanced control strategies

https://sys2wheel.eu

HORIZON 2020

Call: H2020-LC-GV-2018 Type of Action: IA Acronym: SYS2WHEEL Current Phase: Grant Management Number: 824244 Duration: 45 months GA based on the: H2020 General MGA — Multi - 5.null Start Date: 01 Jan 2019 Estimated Project Cost: €6,531,672.50 Requested EU Contribution: €4,873,421.75

Overall project introduction

Innovations for N1 category vehicle

Close-to-wheel suspension for additional cargo and/or battery

Innovations for NI category vehicle

In-wheel motor: increased range via space for battery and efficiency increase

AF	N			Wire	deformation	In
-		Wire feede	r kin		1	re
Z		E	Ţ		~	C
	-	24				

n-wheel motor: costeduction for motor components and production

Parameter	Value (VD1 EM design spec)					
Supply Voltage (nominal)	355					
Supply voltage (range) for motor	284 - 400					
Boost torque (10 sec <mark>)</mark> @ 200 rpm	1050**					
Continuous torque (> 30min) @ 780** rpm	500**	Nm				
Boost torque phase current	300**	Arms				
Continuous torque phase current	120**					
Max. speed (no-load) @ 355 V DC	830** Max speed is simulated at temperature 40°C. At -40°C environmental temperature top speed will decrease by up to 10%. ** At +85°C environmental temperature, the top speed can be increased by 10%.**	rpm				
Max. speed (no-load) @ 400 V DC	940** Max speed is simulated at temperature 40°C. At -40°C environmental temperature top speed will decrease by up to 10%. ** At +85°C environmental temperature, the top speed can be increased by 10%.**	rpm				
Max. speed (with field weakening) @ 355 V & 300 Nm	1020 rpm** (@300 Nm); 1080 rpm** (no load) @ ID=-75A					
Max. speed (with field weakening) @ 400 V & 300 Nm	1150 rpm** (@300 Nm); 1220 rpm** (no load) @ ID=-75A					
Max. output power (Id = 0) (Net Power, ECE R85) (Torque, speed)	73,7 (640 rpm, 1100 Nm) **	kW				

Fully Modular E-AXLE for N2 Vehicle

Highly efficient and cost effective e-motor for e-Axle

E-Motor (single)

kind of machine	-	PMSM	
max diameter (passiv)	m	0,3	
max lenght (passiv)	m	0,18	
max speed machine	rpm	8200	
peak max motor torque	Nm	290	
peak max power machine	kW	72,5	
cont max motor torque	Nm	180	
cont max power machine	kW	50	
full performance voltage range	V	270400	

NI demonstrator on test track

Innovations for NI category vehicle

Additional features:

- Improved thermal management
- Time sensitive network (TSN)

Vehicle Evaluation

Efficiency

Main goals

- Assess different methodologies to compare energy consumption
- Verify improvement of powertrain efficiency

FIAT DOBLO EV

GLOBAL VEHICLE MAP Complete vehicle efficiency (Calculated) [-]

Mid to long term expected impact of the project

Identifier	Expected impacts of H2020-LC-GV-01-2018 Call	Achievements of SYS2WHEEL to meet the impact
Cost reduction	20% cost reduction in mass production (in comparison to the best current generation components) and user friendliness in terms of reach and charging procedures.	 Scalable e-motor with reduced rare earth material content and fully automated production Fully scalable e-axle Reduction of components on vehicle level Fail Safe system through deterministic ethernet leads to a reduction of cabling effort and control components ensuring safety
System Improvement	long duration trips (e.g. 700-1000 km day trips across different Member States) with not more than 60-90 minutes additional travel time and without additional degradation impact on the FEV powertrain including the battery	 In-wheel systems lead to increased space for cargo (business case for logistics companies) or battery (for customers with increased range need) Advanced control developed in SYS2WHEEL increases efficiency
Efficiency increase	Significant advancements of e-powertrain technology	 In-wheel system and fully scalable e-axle Highly efficient e-motors
Quality	Automotive quality enabled in the whole system with new functionalities.	NVH consideration prior to integrationFail safe functionality provided by time sensitive networks

Expected Market Uptake of Technologies by industrial partners

🕝 elaphe	In-wheel m	otors	car mal	kers	end	of 2021 i	increa	ase in nu	mber of sold I	motors
Propulsion Technologies										
AVL	. 🦓 Co	st effective e-mo	otor o	ar makers		end of 20	22	increase solution	e in number of s	f sold e-motor
	POWERTRAIN TECHN		E-axle	system		car r	make	rs		end of 2022
	VECO		eep Z	ero emission vehi or last mile deliver	cle y	fleet operators	ei 20	nd of 023+	new customer existing custo	s, and keeping mers
		_	, and the second s		-					
		HiWi)) tra	onics	In-wheel energy harvesting device	Cor mea whe	ntinuous asurement eel/road dat	of ta	end of 2022	increased num per year (>50)	nber of sold pieces
				Fech Auto	т	SN		c	ar makers	Already started

Project introduction HiPE - High Performance Power Electronics Integrations Alois Steiner, Christian Doppler, Bernhard Brandstätter

A3PS, Eco-Mobility 2022, 24.11.2022

www.v2c2.at

Call Information:

- HORIZON-CL5-2021-D5-01-02: Nextgen EV components: Integration of advanced power electronics and associated controls (2ZERO)
- Type of Action:
- Technology Readiness:

Research and Innovation Action (RIA)

Activities are expected to achieve TRL 5-6

Project Information:

HiPE - High Performance Power Electronics Integrations

Budget Total:	5.8 Mio€
Starting Date:	01.11.2022
Duration:	3 years

High Performance Power Electronics Integrations

There are 4 types of power electronics:

Background

virtual 🌍 vehicle

HiPE consortium brings together **13 participants** from industrial and research \rightarrow whole relevant value chain

to develop a new family of highly energy-efficient, cost-effective, modular, compact and integrated wide bandgap (WBG) power electronics solutions

for the **next generation of battery electric vehicles (BEVs)**, and to facilitate a significant market penetration of WBG in the automotive sector.

Fraunhofer ENAS

Scalable and modular family of WBG-based traction inverters

- Significantly improved specific cooling performance (integrated double-side pin-fin and immersion/impingement/two-phase cooling)
- Suitable for 400V, 800V and 1200V applications
- Power ratings from 50 to 250 kW
- Innovation in circuit topologies, electro-magnetic interference filters
- Stray inductance reduction, Improved DC-link capacitors, materials
- Intelligent and **predictive controllers** to optimize performance
- Self-adaptive digital-twin-based methodologies

The HiPE work plan includes four experimental Use Cases

Thermal Management

HiPE will provide **improved cooling** with integrated sensing and higher local heat rejection → higher currents and SiC material reduction and reduced load of auxiliaries

Improved inverter designs with pin-fin dual-sided, direct cooled transfer molded half bridge power modules

Enabling Future Vehicle Technologies

THANK YOU

Alois Steiner, Christian Doppler, Bernhard Brandstätter

Department Energy Efficiency & Human Centered Systems VIRTUAL VEHICLE Research GmbH

christian.doppler@v2c2.at

24.11.2022

 Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

Republic of Austria

Digital and

Virtual Vehicle Research GmbH has received funding within COMET Competence Centers for Excellent Technologies from BMK, BMDW, the Province of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion Agency (FFG) has been authorised for the programme management.