CargoScooter Drive Train
Founded in 2000, Oxygen is the world leader in the development and manufacturing of electric scooters for the delivery business.

- **2000**: Oxygen launched first generation scooter for the consumer market (Lead-Acid Batteries).
- **2002**: First to introduce the fleet-model: the “PostScooter” with Nickel-Zinc technology.
- **2004**: Oxygen launches the CargoScooter with Saphion Lithium-Ion battery system.
- **2006**: Oxygen implements technology with Electric brake, a regenerative brake system and the advanced speed control.
- **2008**: Oxygen is the official provider of the largest zero emission postal delivery fleet in the world.
- **TODAY**: Oxygen continues to innovate and lead in the electric scooter industry.
Oxygen has ten years experience in LEV’s.

European professional companies rely on the CargoScooters.

Swiss Post n° scooter:

- 2006: 0
- 2007: 0
- 2008: 100
- 2009: 50
- 2010: 1000
Electric scooter as a job partner

User needs

- Reliability
- Safety
- High load capability
- Long life
- Stop and go “proof”
- Easy to park
- Maneuverable
- “Zero” parking constrains
- “Zero” mechanical vibration
- “Zero” maintenance
- “Zero” noise

PRODUCT DNA

- Customizable
- Flexible and modular
QFD CargoScooter Drive Train

• Mechanical configuration:
 • direct drive motor
 • motor control built in the motor arms
 • mechanical braking system integrate in the arm

• Electric configuration:
 • multi-voltage control unit

• Electrochemical configuration:
 • modular battery pack system

- Mechanical sizing and component choice:
 • We used aluminum component
 • 12” wheel
 • We maximize the arm and control unit case dimensions

- Electric sizing and component choice:
 • brushless motor

- Electronic sizing and component choice:
 • IXYS Trench Gate MOSFET Modules with lower Rds(on) GWM100-01X1-SMD

- Electrochemical components
 • We choose LiFeMgPO4 batteries for long life and safety performance

<table>
<thead>
<tr>
<th>Tech. Specification</th>
<th>Customer Importance</th>
<th>Low Moving Part</th>
<th>No Fluids</th>
<th>High Torque</th>
<th>Linear Power</th>
<th>Power Erosion</th>
<th>Maintenance Part</th>
<th>Easy to Reach</th>
<th>Adjustable Performance</th>
<th>Low COG</th>
<th>Reverse Mode</th>
<th>Settable Drive Mode</th>
<th>Multi Voltage</th>
<th>LiFeMgPO4 Battery</th>
<th>Mechanical Transmission</th>
<th>Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Reliability</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Maintenance</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to Park</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No Parking Constrain</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Maneuverability</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silent</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Long Life</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No Vibration</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>High Load Capability</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Customizable</td>
<td>4</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to Maintain</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Range</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>123</td>
<td>73</td>
<td>41</td>
<td>44</td>
<td>31</td>
<td>31</td>
<td>44</td>
<td>71</td>
<td>35</td>
<td>60</td>
<td>16</td>
<td>59</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Oxygen Macro-component Design for Assembly and to optimize the supply chain

TRACTION BATTERIES
- LiFeMgPO4 Modular battery pack:
 - 24 V 2.6 kWh
 - 36 V 2.6 kWh
 - 36 V 3.9 kWh
 - 48 V 5.2 kWh

MULTI VOLTAGE AND MULTY FUNCTIONAL MOTOR CONTROL UNIT
- 2-stages Drive: Booster+ 3 phase inverter with advance functionality:
 - Patent EHC system
 - Reverse mode
 - Safe drive mode

SENSORED ELECTRIC MOTOR
- 3 phase AC Brushless motor
 - 900 rpm
 - 150 Nm peak torque
 - Two sin/cos Hall sensors

TROLLTE
- Patent speed control algorithm
- 1 G working cycles

HUMAN INTERFACE
- Full graphics
- Customizable
- Adjustable

CONNECTIVITY
- Dedicate SW for:
 - Boot loader
 - Diagnostic
 - Tuning

AUXILIARY SYSTEM
- Light
- Horn
- Etc.

TRAY
- main electromechanical components
- Auxiliary 12V battery (supply the system if faulty traction batteries)
- DC-DC 100W insulated DC/DC Converter
- Main power contactor
- Advanced BMS

ACTIVE SHOCK ABSORBER SYSTEM
- 4 position adjustable

BRAKING SYSTEM
- Patented regenerative braking system integrate with mechanical disc brake system

CHARGER
- Universal Hi-frequency 1 KW
- On board battery charger
Main Drive Train Components Placement

The most heavy drive train components are placed close to the ground.
The battery charger and the tray are placed in a water protected compartment.
We minimize the power cabling length and we maximize the scooter handling and carrying capability.

Low CoG
All heavy weights below this line
(about 70% of the total weight)
Oxygen motor system

Oxygen designed a very compact motor system in order to:

• Minimize cabling length
• Optimize the thermal management especially in power peak
• Optimize the production and quality control process
• Saving space on the scooter in order to maximize the battery compartment
• Have a very simple wheel maintenance
• Have the integrate braking system

Full aluminum finned case:
- Light and corrosion resistant
- Top notch thermal performances

Structural aluminum arm:
- Wheel support
- Drive support
MULTIPLE BOARDS APPROACH:
- Flexibility
- Power/Logic isolation
- 3D construction

Texas Inst. TMS320F2808 high performance DSP
Multiple motor control modulation algorithms
Scooter specific I/O lines
CPLD controlled safety redundancy system

Pre-charge and brake resistors included in drive’s case
IXYS GWM100-01X1-SMD Trench gate MOSFET modules

DOUBLE STAGE ARCHITECTURE

Double stage motor control architecture advantages:
- Ultra wide input voltage range
- Stable output voltage (not depending on battery impedance)
- Ultra wide speed range regenerative braking
- High efficiency, motor speed range extension

Double stage motor control architecture function principles:
- Booster and deflux strategy combined to achieve higher motor speed and high motor torque at very low speed
- Booster give optimal bus voltage for each speed range
- Motor speed is only limited by MOSFET max Vdss

![Diagram showing double stage motor control architecture and voltage boost and deflux zones.](image)
Data logger sample (CargoScooter hi-speed prototype)

TEST DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time</td>
<td>h</td>
<td>0.17</td>
</tr>
<tr>
<td>Rest time</td>
<td>h</td>
<td>0.02</td>
</tr>
<tr>
<td>n° stop and go</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Range</td>
<td>km</td>
<td>5</td>
</tr>
<tr>
<td>Battery energy pick up</td>
<td>Wh</td>
<td>357</td>
</tr>
<tr>
<td>Regenerative braking energy</td>
<td>Wh</td>
<td>-60</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>Wh/km</td>
<td>296</td>
</tr>
<tr>
<td>Consumption</td>
<td>Wh/km</td>
<td>57</td>
</tr>
<tr>
<td>Average speed (rest time ex.)</td>
<td>km/h</td>
<td>36</td>
</tr>
</tbody>
</table>
Custom CargoScooter

- Several Front and Rear load Configurations
- Range extension
- Performance mapping
Custom CargoScooter

- GPS
- Fleet management system
- Fast charge unit
- Custom color and graphics
- Custom courtesy sound