

International Energy Agency HEV-IA Task 28 "Home Grids and V2X Technologies"

Gwangju, May 1st 2015

Miguel Cruz Operating Agent

RESEARCH AND TECHNOLOGICAL AREAS

Advanced Materials

- Functional Nanomaterials
- Catalysis
- Materials for Solar Systems
- Nanoionics and Fuel Cells
- Energy Storage and Harvesting
- Bioenergy and Biofuels
 - Thermochemical Conversion
 - Biorefinery and Microalgae

Research Units

Energy Efficiency: Systems, Buildings and Communities

- NZEB (Net Zero Energy Buildings and Communities)
- Integration of Renewables.
- Smart Grids and Microgrids
- Green IT
- Electric Mobility
- Lighting
- Economic analysis and regulation

Offshore Wind Energy

- Aerodynamics and Aeroelasticity
- Electric Machines and Control Systems
- Grid Integration
- Wind resource assessment at see
- Project "ZÈFIR Test Station"

Technological Development Units

GOVERNING BODY

GOVERNMENT OF CATALONIA

Min. Enterprise and Labour (President)
Min. Economy and Knowledge (VPresident)

Generalitat de Catalunya

GOVERNMENT OF SPAIN

CIEMAT (Min. Economy and Competitiveness)
IDAE (Min. Industry, Energy and Tourism)

UNIVERSITIES

Barcelona TECH (UPC)

Barcelona (UB)

Rovira i Virgili (URV) in Tarragona

COMPANIES

ENDESA
GAS NATURAL FENOSA
Fundación REPSOL
CLH
ENAGÁS

ALSTOM Wind

OPERATING AGENT

The **IREC** has two headquarters: Barcelona and Tarragona.

The center in Barcelona deals with:

- Thermal Energy. Lighting
- Electrical Engineering. Offshore Wind Energy
- Advanced Materials for Energy

The **center in Tarragona** deals with:

- Bioenergy
- Laboratory for Thermal Energy and Energy Integration

Spanish soccer time: 9h00 pm

Korean soccer time: 4h00 am

Air transport: 9,600 km x 2 = 19,200 km

Total CO₂: 2.3 tons CO₂

Total CO₂ (30 persons): 80 tons CO₂

Environmental effects e.g. GHG-emissions

Lower renewable energy curtailment!

Time

reinforcement!

Less peaking power plants! **Higher security of** supply!

... So... how many drivers should we convince for switching??

Outline

- 1. Introduction to Task 28: Home grids and V2X technologies
- 2. Objectives achieved so far...
- 3. Next steps

Outline

- 1. Introduction to Task 28: Home grids and V2X technologies
- 2. Objectives achieved so far...
- 3. Next steps

Current Participants on Task 28

COUNTRIES

Denmark

Switzerland

France

Spain

United States

COMPANIES

Task 28 "Home grids and V2X technology" SCOPE

Customers may use the electric storage available from PEVs for uses other than powering the vehicle:

Task 28 "Home grids and V2X technology"

VISION

Different countries can use V2X technologies for **different objectives** depending on their **specific energy context**.

Task 28 "Home grids and V2X technology"

VISION

"Total cost of ownership" (TCO)

Task Objectives

Analyzing the technical and economic viability

→

Potential V2X modes and functionalities

Existing codes, regulations and BMs

 Connecting and synchronizing the different V2X research and demonstration projects

Continuous contact V2X technology key actors

Coordination with other HEV IA Tasks

3. Coming up with a policy making toolbox and a technology roadmap

Definition of a typical set of country specific systems and regulatory frameworks for the choice of a given portfolio of energy policy options

4. International technical information exchange

Expert Workshops

Promotion of new V2X technology demonstration projects.

Collaboration with international organizations and call for proposals (e.g. EC - H2020)

Task 28 "Home grids and V2X technology"

HYBRID & ELECTRIC VEHICLE IMPLEMENTING AGREEMENT

WORKING METHOD

Outline

- Introduction to Task 28: Home grids and V2X technologies
- 2. Objectives achieved so far...
- 3. Next steps

Achievements so far...

- 1) Who are the main players in V2X activities? Which is the market forecast for the coming years?
- Which is the business case viability of V2G across the world? Which are the national regulations favoring the taking off for V2G activities? Is V2G already profitable in any region?
- 3) Which are the existing interoperability standards nowadays and which are their main gaps?

1) Main players: commercial deployment

1 Since 2012 V2H available as back-up storage and bill saving tool in Japan

1) Main players: commercial deployment

2 Partnership announced at 85th International Motor Show (March'15)

L'ENERGIA CHE TI ASCOLTA. ENGESA

1) Main players: demonstration projects

3 Some V2G demonstration projects in the US: States of interest

1) Future markets

- Japan is quite mature: around 10% of Nissan Leaf owners have a V2X enabled two-way charger.
- Tests in US mainly focused on V2G for frequency regulation.
- > Tests in **Europe** also focused on V2G, but less profitable.
- Other conclusions so far...
 - ➤ **Battery size** to be increased during the coming years... more room for V2X (See Mr. Brennan's presentation, April 30th)
 - First fleet operators & energy managers as an entrance door for the mass market
 - > The **higher share of RES**, the more open the country to V2X
 - New TSO balancing markets, and emerging DSO flexibility remuneration means

2) Business Cases and Regulation

- > A) Results from some **demonstration projects**...
- B) Some regulatory proposals so far...

2) A) Demonstration projects

- An average revenue of \$5 per vehicle per day from ancillary services
- Frequency regulation is a viable market

Goals

- Demonstrate DR at home
- Aggregation of stationary second use batteries with in use vehicles

Costs and Revenue

 Earn \$1,000 at launch and \$540 at project completion in gift cards

Costs and Revenue

- \$100,000 diesel bus ("C" or "D" sized bus)
- \$230,000 EV bus (plus \$30,000 bidirectional retrofit)
- Revenue: \$5,000 to \$20,00 per bus per year

HYBRID & ELECTRIC VEHICLE IMPLEMENTING AGREEMENT

2) B) Regulatory proposals

Expected remuneration for frequency control:

Current French rules: revenues = 0€

Ideal market rules: revenues from 193€ to 593 € / EV/ year

Ideal market rules

- **1. Minimum rated power** to be included in the market 100kW
- 2. Possibility to aggregate units across various DSO technical zones
- Possibility to aggregate power flows and not only financial products
- **4. Nature** of the payment scheme
- 5. Avoid **incompleteness** of the payment
- **6.** Extra bonus for intense flexibility

2) Business Cases and Regulation

Summarizing...

1. United States:

- Impact of market design on V2G demo projects deployment
 - Delaware PJM
 - California energy storage and EV infrastructure initiative
- Preliminary results: around 4-5\$/day for cars (cost included), and around 15-60\$/day for buses

2. Europe

- ENTSO-E network codes are paving the way for enabling these technologies
- National/local TSOs and regulators should made endeavors to improve their rules
- Preliminary results: around 0.8-2\$/day for cars (lower charging power and less parking time)
- What if additional added value services are considered in addition to "balancing services" (frequency regulation)???
 - Peak shaving
 - ii. Energy arbitrage
 - iii. Congestion management services for TSOs and DSOs
 - iv. Others??

The Electric Vehicle

Special properties:

- 1. Fast response time.
- 2. High-power load
- 3. Possibility of V2G support

V2X Enabling standards:

- > EV EVSE **ISO/IEC**: 15118
 - Ongoing work on V2G use cases (early stage...)

- > EVSE Upstream: **OCPP 2.0**
 - Delta from version 1.5: pricing, smart charging, monitoring

Honorable mentions:

- CHAdeMO: perfect example of "de-facto standard"
- IEC 61851
- IEC 61850-90-8
- OSCP **OCPP 2.0**

ISO/IEC 15118

Green eMotion Standardization Roadmap

Global Harmonization Efforts (US driven):

European Commission

EV-Smart Grid Interoperability Centers
 PEV-EVSE interoperability, PEV-grid integration and PEV test procedures

Germany

 Global InterOP Team
 AC and DC interoperability requirements, test procedures and tools

China

 MIIT-DOE Letter of Intent Cooperation on industrial efficiency and EVs

Outline

- Introduction to Task 28: Home grids and V2X technologies
- 2. Objectives achieved so far...
- 3. Next steps

Next steps...

Open questions:

- What is the Cost (e.g. marginal replacement battery cost, software/hardware for AS participation) - Benefit (e.g. participation on reserve capacity market) of V2X functionalities (V2G, V2H, V2L)?
- How building codes, self-consumption regulation, and DSO market rules should be modified?
- LCA of V2X enabled EVs vs. normal EVs?
- Energy storage is very competitive... how electricity markets prices will evolve in the future?
- Further understanding battery impact for various use cases and warranty implication...

Next steps...

Thank you very much for your attention

Enjoy the rest of the ExCo!

Miguel Cruz IREC's Operating Agent

e-mail: mcruz@irec.cat

http://www.ieahev.org/tasks/home-grids-and-v2x-technologies-task-28/

Sponsors:

Funded by:

