

IA-HEV Task 20 "Quick charging technology"

EVS 28- Korea May, 2015

Introduction to IA-HEV Task 20

Introduction to IA-HEV Task 20

- Task 20 addresses QC technologies for PEV. Approved in November 2011, for a running period of 3 years (2012-2015)
- CIRCE operating agent of the task. Participants: Spain, USA, Germany and Ireland.
- Funding: national funds of participating countries + attendees covering their expenses.
- Task aims at bringing together all stakeholders: OEM, utilities, battery companies, government representatives, academia and equipment manufacturers. To avoid gaps along the QC management systems

Task 20: Goals

- Discuss QC's role in deployment of electric vehicles.
- Knowledge share on market deployment roadmaps for QC.
 Special focus on:
 - Diminish the grid and EV-battery impact
 - Breakdown non-technical barriers
- Get consensus and give recommendations on the standardization process for vehicles electrification. Involvement of participants in standard committees (JARI, BWM, VW, JRC-EC...)
- The requirements and issues of quick charging technology for future smart grid promotion
- Designing and ensuring convenient, safe, and secure handling for consumers

Why QC?

- QC: 80% of EV battery charged in less than 20 minutes
- Main role: reduction of range anxiety (big barrier to deployment of EVs)
- Complement (not substitute) "normal" charging
- Main use as public infrastructure in urban and inter-city trips

Short Distance Trip

Normal Charging

Task 20: Working method

Four workshops:

- Kick-off meeting (L.A., May'12): main challenges and barriers for QC
- 2nd Meeting with METI (Japan, June'13): QC technology development trends

- 3rd Meeting with EVS 27 (Barcelona, Nov'13): interoperability
- 4th Meeting with Task 10 and Batteries 2014 (Nice, Sep'14): impact of QC in EV's battery
- Survey: barriers and solutions for large deployment of QC (2014)

Final report

IEA INTERNATIONAL ENERGY AGENCY

Final report; Content

- 1. Introduction
- 2. Quick Charging Technology: State of the Art
- 2.1. CHAdeMO
- 2.2. Combined Charging System (CCS)
- 2.3. CHAdeMO versus COMBO
- 2.4. Other quick charging technologies: inductive charging
- 3. Impact of the quick charging on the electrical grid
- 4. Impact of the quick charging on the battery
- 5. Business models for quick charging
- 6. Vehicle-to-grid (V2G)
- 7. Situation of Quick Charging Technology

Actions at EU level

Specific national programmes

ANNEX 1: IEA SURVEY RESULTS; BUSINESS MODELS, CHARGER INFRASTRUCTURE, OEM, GRID IMPACT, ROADMAP, LIST OF PARTICIPANTS ANNEX 2: RELEVANT STANDARDS FOR QUICK CHARGING

Charger standards; Trends

- Two main industrial standards for DC QC: CHAdeMO and Combo
- CHAdeMO first (2010) by
 4+1 Japanese organizations:
 +430 organizations in
 CHAdeMO association
 (today)
- Combo system later (2013)
 supported by ACEA and SAE
- EC: DC QC points deployed in EU to comply AT LEAST with Combo from 2017

CHAdeMO

Nissan Leaf charging sockets: CHAdeMO (left) and ISO61196-2 Type 1 (right) to use 1 to 3 (AC)

COMBO

IEA INTERNATIONAL ENERGY AGENCY

Widespread standards; CHAdeMO vs. Combac

CHAdeMO

COMBO

Combo chargers installed in Europe

- Main difference: Combo system allows 2 types of charging (AC and DC) in same charging inlet in EV
- CHAdeMO and Combo non interoperable → problem for car manufacturers!!
- Coexistence possible

 multiple-arm chargers now in market
- Proved in EU: installation of both CHAdeMO (1600) and Combo (830) increasing

QC impact on grid; I

Deterioration quality of grid (reactive power, harmonics, etc.)

→ advanced power electronics available have limited the problem

Distortion; DC quick charging produces proportionally less quality distortion to the electrical grid than slow and medium AC charging

QC impact on grid; II

Overload of the grid:

- Issue for weak networks
- QC occurring in peak-times
- Installed capacity not an issue in US, Spain....

Power consumed by quick charger

Time of Day When Fast Charges Occur

Green Lots

CIRCE; CRAVE Project

QC impact on grid (II)

Solutions explored:

Integration of ESS and renewables in the chargers for peak shaving effective but important cost

Smart charging strategies → drivers' behavioural change:

demand control of the EV charging \rightarrow modify drivers behaviour complicated, require data mining, innovative communication, ICT, incentive programmes

Peak shaving using ESS CIRCE; CRAVE Project

Smart Charging App

BMW

QC impact on EV battery

- Batteries are the most expensive component of EV, contributing to high prices of EVs

 concern from OEMs about QC damaging batteries
- Tests performed by participants of the task proved this wrong:

Normal Evolution of battery's capacity

Average capacity
 difference between EVs
 charged using slow and
 quick charged of 0.6
 KWh (2.6% SOC) after
 50,000 miles

IEA INTERNATIONAL ENERGY AGENCY

QC impact on EV battery (II)

- Other studies proved relation of battery pack temperature and degradation
- Low temperatures \rightarrow lithium plating \rightarrow degradation and safety issues
- Potential degradation in hot climates \rightarrow importance of BMS

Battery pack average temp and % capacity loss after 10 years in extreme

Business models

- Not clear and unique business model for QC
- Very related to EV driver's behaviour and patterns → short trips → charging home/work
- High installation & operation costs +
 relatively low average charge events/day
 public support needed
- Pricing strategies an issue
 impact of electricity price
- Paying methods: for a small EV market > membership fees

Charging profile EV drivers

Same Leafs on non-work days

Idaho National Laboratory

Business models

Green eMotion project

- Very complex
 ecosystem
 many actors,
 different interests
- Interoperability a big issue → lack of standardization of identification and communication protocols \rightarrow customers locked to same EV service provider ... an issue even after standardization

QC in different countries

- EVI countries targets for 2020: 6,000 Quick Chargers \rightarrow only Japan 5,000 (3,000 already deployed). 600 CSS Chargers by 2017+Korea 1100-1400 QC by 2020
- EU no common targets now: some countries ambitious programs
 (Ireland, Estonia, Netherlands). But Directive 2014/94/EU →
 countries to establish targets and plans for charging
 infrastructures (incl. QC) for 2020
 EVSE Deployment profiles (2012)
- Different charging strategies per country
- Public authorities most common support measures: tax exemption, financial incentives, direct funding, procurement regulation

Quick Charging Survey

Survey: Participation

← Per type of organization

Survey: Roadmap

THANK YOU FOR YOUR ATTENTION

Tel.: [+34] 976 761 863 · circe@unizar.es

www.fcirce.es