High pressure PEM-elektrolysis: Maximizing "well-to-wheel" efficiency for hydrogen-powered vehicles

© 2010 Franz E. Leichtfried Biovest GmbH

Biovest's activities

- market studies, project development with a focus on hydrogen and renewable energies.
- Participation in interdisciplinary research and demonstration projects, e.g.:
 - HyLog by Fronius
 - "The renewable Hydrogen fuelling station of the future" by Joanneum at the HyCentA
- Design of energy strategies for power utilities and political entities
- Biovest is the Austrian distributor of PEM electrolyzers built by Proton Energy Systems

Hydrogen mobility: Hydrogen as a range extender

- hydrogen has the highest energy density per mass unit
- Hybrid vehicles combining a battery with a fuel cell profit from a longer range
- Example: Fronius Hylog project:
- http://www.fronius.com/cps/rde/xbcr/SID-838CEE98-8C78BFBB/fronius_usa/4000062925EN_PRO_0208_hylog_referenz_en.pdf http://www.fronius.com/cps/rde/xbcr/SID-F151EC24-DE2D003E/fronius_usa/Poster_HyLog-low.pdf

Ranges of 2011 Generation of BEVs

- Renault Kangoo 2008: 90 km (http://www.elektro-auto.net/index.php?option=com_con_tent&task=view&id=82&Itemid=57)
- CITROËN C-ZERO 2011: 130 km (http://www.c-zero.citroen.com/#/at/news/vorstellungskraft-teil2)
- Renault/Nissan Leaf 2011: 160 km (http://kurier.at/freizeit/motor/2030841.php)
- Other brands:

http://www.faz.net/s/Rub1DABC609 A05048D997A5F315BF55A001/Doc~ E5170E852FE2D41EEBE5F454E40C0 61FB~ATpl~Ecommon~Scontent.ht ml

BEVs: battery electric vehicles

...and in the winter?

- "Next to driving most energy is lost with heating and cooling."
- Electric heating drastically reduces range
- Matthias Küsell, Head of R&D for BEV and PHEV systems at Bosch (http://kurier.at/freizeit/m otor/2018582.php)

Current range of FCEVs

Fuel Cell:

- 50 % efficiency, remainder dissipated as heat
- Hydrogen has the highest energy density per mass unit
- Also a climate-friendly approach: less CO2 if hydrogen is produced by renewable electricity

Honda FCX Clarity fuel cell hybrid:

- First assembly-line produced FCEV
- range 386 km (with 700 bar hydrogen approx.580 km)
- 350 bar, 3.92 kg hydrogen
- Complete with electric heating and all customary servo drives:
 http://automobiles.honda.com/fcx-clarity/specifications.aspx

FCEV: Fuel cell electric vehicles

Market Forecast on Battery Electric, Plug-in Hybrid and Fuel Cell Electric Vehicles

A portfolio of power-trains for Europe: a fact-based analysis

Source: http://www.zeroemissionvehicles.eu/

The following companies and organisations participated in this study:

Car manufacturers

BMW AG, Daimler AG, Ford, General Motors LLC, Honda R&D, Hyundai Motor Company, Kia Motors Corporation, Nissan, Renault, Toyota Motor Corporation, Volkswagen

Oil and gas

ENI Refining and Marketing, Galp Energia, OMV Refining and Marketing GmbH, Shell Downstream Services International B.V., Total Raffinage Marketing

Utilities

EnBW Baden-Wuerttemberg AG, Vattenfall

Industrial gas companies

Air Liquide, Air Products, The Linde Group

Equipment car manufacturers

Intelligent Energy Holdings plc, Powertech

Wind

Nordex

Electrolyser companies

ELT Elektrolyse Technik, Hydrogenics, Hydrogen Technologies, Proton Energy Systems

Non-governmental organisations

European Climate Foundation

Governmental organisations

European Fuel Cells and Hydrogen Joint Undertaking, NOW GmbH

All conclusions are based on proprietary industry data

This study represents the most accurate to date, ²⁶ as conclusions are based not on informed speculation, but on confidential, granular and proprietary data, provided by key industry players. This has allowed a true comparison of the power-trains, with all underlying assumptions clearly stated (see Methodology section, pages 15-25).

FCEVs are comparable to ICEs on driving performance and range

1 Bars represent range of performance across reference segments

Acceleration

Curb weight

 Minimum starting temperature

PayloadCargo volume

- 2 Fast charging; implies higher infrastructure costs, reduced battery lifetime and lower battery load
- 3 The gas tank of a PHEV has the same refueling time as a conventional vehicle

FCEV

Elektrolysis: hydrogen production using (renewable) electricity and water

- Alkaline (KOH) Electrolysis
- "Polymer-Electrolyte-Membrane" (PEM) or "proton exchange membrane" (PEM) Electrolysis

How PEM Electrolysis Works

The inside of an electrolyzer

Membrane Exchange Assembly (MEA)

H₂ Generator

Cell stack

PEM-Electrolyzer HOGEN S 40 has the size of a washing machine

Why High pressure electrolysis?

- Pressurization during electrolysis occurs via true isothermal electrochemical compression and is based on the Nernst equation
- Electrochemical compression is more efficient than mechanical compression and reduces need for serviceintensive mechanical compressors:
- Electrolysis at 165 bar: no two- or three-stage compression system required; only booster compressor necessary. much longer service intervals of compressor
- Electrolysis at 350 bar: no or only small booster necessary
- >350 bar: Electrolysis inefficient; booster compressor needed

Why High pressure electrolysis?

- Greatly simplifies design of hydrogen fueling station
- Greatly reduces reduces size and cost of fueling station
- Estimates of efficiency gains "well-to-wheel" range from 5 to 15 %
- Storage of renewable energy (wind, solar) as hydrogen becomes economical

Development of a high pressure H₂ generator for Home Fueling

Product Requirements:

- Small-scale generation
- Safe system, easy to operate
- → ≥ 5,000 psi (350 bar) generation pressure
- Potential integration with renewables
- Simple, low cost
- Applicable Codes & Standards
 - ISO 22734-2, "Hydrogen Generators Using Water Electrolysis Process – Part 2: Residential Applications"

Small High Pressure H₂ Generator

- 2,400 psi (165 bar) differential pressure
- 0,6-2,2 kg H₂/Tag
- Field demonstrations with select customers underway
- Over 20,000 hr of continuous operation
- Stack & system durability demonstrated
- Outdoor version recently completed
- 350 bar cells already in continuous testing, first field testing in two years

Effect of Pressure

Small voltage penalty

Performance vs. Time

High Pressure Durability

- -5-cell stack, ~1.6 A/cm², 2400 psi**d** H₂ (165 bar)
- -0.25 kg/hr (5 slpm)
- -+ 18,000 hr at pressure

Home fueling station for one vehicle

Home fueling station concept design

Home fueling station at Volkswagen in the Isenbüttel Technology Center

- Hydrogen generator Hogen S40 by Proton Energy Systems
- fed by 50 m² photovoltaics system
- Generates about 25 Nm³ H₂ per day
- Enough to drive an FCEV 200 km

Thank you for your attention!

Biovest:

Project design and -management for hydrogen projects

(franz.leichtfried@biovest.at)

Extra slides for discussion

High Differential Pressure PEM System

PEM Fuel Cell PEM Electrolysis Solid polymer electrolyte Solid polymer electrolyte Hydrogen electrode (anode) Oxygen electrode (cathode) Hydrogen electrode (cathode) Oxygen electrode (anode) Hydrogen Oxygen Air (O2) Hvdroaen + vapor Protonic Process + vapor Water Water, heat 2H₂ - 4H +4e H20 4H⁺+4e→2Hz H₂ O Process (-) (+) (-) Water DC Load DC Power

Hydrogen Generation Mode

Liquid water in contact with membrane

Power Generation Mode

- Still have to consider 2-phase flow optimization in flow fields
- High (~2V) potential material compatibility
- High pressure differential (200 to >2400 psi) and high sealing loads
- Longer lifetime expectations (≥ 50,000 hours)

PEM Membranes ("cells" or "MEA's") form a "cell stack"

High-Purity Hydrogen made on-site using simple PEM Electrolyzers

- Manufactured by Proton Energy Systems
- 99,999 % H₂ purity
- Dew point: < 65°C
- 15 165 bars pressure
- Input: electricity, deionized water, cooling water
- Modern, simple, easy-to-use polymer electrolyte or proton exchange membrane (PEM) electrolyzers without caustic hydroxides, asbestos or other hazardous materials
- Turnkey sytem; installed in one day

Analysis Report – Atlantic Analytical Laboratory
Sample of H2 gas @ 225 psi
generated by Proton's HOGEN® hydrogen generator

Test Description/Units	Result	Report Detection Limit (D.L.)
Nitrogen (ppm w/by MS)	nd	4
Oxygen (ppm v/v by MS)	nd	4
Carbon Dioxide (ppm v/v by MS)	nd	4
Argon (ppm v/v by MS)	nd	4
Helium (ppm v/v by MS)	nd	10
Hydrogen (% v/v by MS)	99.9+	0.1
Total hydrocarbons (ppm v/v as CH4)	_	0.1
Water Vapor (ppm v/v by EDP)	nd	0.5

D.L. = report detection limit. nd = indicates the concentration is less than the report detection limit. — = test not performed. % = percent. ppm = parts per million. ppb = parts per billion. v/v = volume analyte/volume sample. w/w = weight analyte/weight sample. Unit conversions: 1 ppm v/v = 0.0001% v/v.

High-Purity Hydrogen made onsite using simple PEM Electrolyzers

- Can be put anywhere without risk of explosions:
 Negligible oxygen diffusion through PEM-Membrane (oxygen side has ambient pressure)
- Range of operation: 0 100%;
 No need for "idle voltage" to counteract oxygen diffusion (alkaline elektrolysers continuously operate at 35 % of full load)
- PEM Elektrolysers automatically produce hydrogen on demand; react to demand in fractions of a second
- -> only sensible electrolyzer type for grid-independent PV or wind power systems
- Power consumption: 5.9 kWh/Nm³ H₂

PEM is Proven Technology

PEM Inventors Grubb & Neidrach, 1955

- -PEM FC Invented at GE in 1953
 - NASA Gemini 1963-65
 - PEM Water Electrolysis since 1973

HOGEN® 380 A Hydrogen Generator, 1998

- Proven reliability
 - US Navy commissioned first PEM electrolyzer in 1982 in a nuclear submarine.
 - Replaced dangerous, high maintenance KOH systems
 - Over 10 million cell hours proven in critical life support (US, UK Navy Submarines)
 - Zero downtime due to cell failure in Submarine Program

Proton Energy Systems

- Manufacturer of Proton Exchange Membrane (PEM) hydrogen generation products using electrolysis
- Founded in 1996 in Wallingford, Connecticut.
- Over 1,200 systems operating in 60 different countries

Serial production of electrolyzers

PEM cell stacks

Turnkey systems

Models from 0.25 to 30 (soon 75) $Nm^3 H_2/h$

Current status of FCEV vehicles

FCEV: Fuel cell electric vehicles

Source: http://www.zeroemissionvehicles.eu/

Energy density of hydrogen

Für Betrieb eines Wasserstoffautos erforderliche H₂-Produktion

- 12.000 km pro Jahr
- ─ Verbrauch: 1,1 kg H₂/100 km
- Jahresverbrauch:
 132 kg H₂ oder 1.468 Nm³
- Benötigte Tagesmenge (300 Tage /Jahr):
 0,45 kg H₂ oder 5 Nm³
- 5 Nm³ Tagesproduktion:
 PEM-Elektrolyseur Proton Energy HOGEN S40
 (siehe HyCentA in Graz) mehr als ausreichend
 (1 Nm³ pro Stunde)

Elektrolyse Stromverbrauchsberechnung

- Benötigte Jahremenge:
 132 kg H₂ oder 1.468 Nm³
- Stromverbrauch : 6 kWh/ Nm³ H₂
- Jahresgesamtstromverbrauch (300 Tage Betrieb):
 8.808 kWh

Erforderliche Kapazität – Photovoltaik oder Wind

Zur Erzeugung von jährlich 8.808 kWh:

- 53 m² (8,8 kWp) PV-Anlage bei 20% Wirkungsgrad und PV-Jahresertrag von 1.000 kWh/kW_p
- 5 kW Windturbine