

Battery Technology and Simulation of Lithium-Ion Systems

A3PS 18.-19. November 2010

Daniel Watzenig, Martin Cifrain

Kompetenzzentrum – Das Virtuelle Fahrzeug Forschungsgesellschaft mbH (ViF)

Outline

- Motivation
- Lithium-ion batteries key attributes
- Modeling approaches
 - Polynomial approximation
 - Equivalent-circuit models
 - Electrochemical model
- Ageing of Lithium-ion batteries
- Generic energy management
- Conclusion

Why modeling of lithium-ion batteries?

Mechanical & electrical integration

- Communication interfaces
- Packaging
- HV connections
- Power interface

Thermal management

- air-cooled
- liquid-cooled

Electrochemistry

- Li-ion
- NiMH (Nickel-metal hydride)

Hybrid system electronics

- BMS (Battery Management System)
- CSC (Cell Supervisory Controller)
- Software
- Electronics
- Power interface

Key battery attributes

Energy density

 Total amount of energy that can be stored per unit mass or volume. How long will your system run before it must be recharged?

Power density

 Maximum rate of discharge power per unit mass or volume. Low power: i-pod. High power: power tools.

Low-temperature energy and power density

• The amount of energy that can be recovered decreases at low temperatures due to slower charge and mass transfer.

Safety

 At high temperatures, certain battery components decompose and can cause hazardous exothermic reactions.

Lifetime

 Most applications require a high stability of energy density and power density during repeated cycling.

Operation modes of lithium-ion batteries

Source: Johnson Controls Saft Advanced Power Solutions GmbH

Comparison of different modeling approaches

Model	Simulation speed	Accuracy	Finding parameters	Versatility	Ageing
Ideal voltage source	++		none	++	-
Behavioral model	+	~	+	-	-
Polynomial model	+	+	~	~	~
Equivalent circuit model	+	+	~	+	~
Electrochemical model	-	+	-	~	+

Polynomial approach

- Thermal/electrical model
 - o U(SoC, T)=f(I(t), T, SoC, SoH)

- Objective:
 - finding a proper mathematical/empirical description of the cell behavior
- based on a designed experiment (DoE)
- Approximation of measurements or reducing a more complex model (e.g. using Padé approximation, Krylov subspaces, surrogate models, TSVD, neural networks, fuzzy rules,...)

Equivalent-circuit models

- fast
- easy to approximate
- Double-layer capacity
- Warburg impedance
- Ageing effects (empirically, up to a certain degree)
- Problem: temperature-dependency

$$E(i,T,t) = \sum_{j=1}^{n} P_{j} \cdot sod^{n}(i,T,t) + \Delta E_{0}(T)$$

$$sod (i,T,t) = \frac{1}{Q_0} \int_0^t \alpha(i,t) \cdot \beta(T,t) \cdot i(t) dt$$

$$i(t) = \frac{E(i,T,t)}{R(t) + Z_{Load}}$$

$$c_{p}m\frac{dT(t)}{dt} = i^{2}(t) \cdot R(t) - h \cdot A \cdot (T(t) - T_{Ambient})$$

Simple equivalent circuit model 8 parameters

More advanced equivalent circuit model 26 (=2+10+10+4) parameters

Zarc → depression of semi-circles
Warburg: diffusion process (high frequencies)

Source: D. Andre et al., Jnl. of Power Sources, 2010 (in press)

Impedance spectrum

Discretization of the electrode. The main direction of electrochemical reaction is defined by x while additional diffusion in solids is described in r-direction.

Source: K.. A. Smith, IEEE Conf. on Control Applications, 2008

Source: Virtual Vehicle Research Center, 2009

- Set of coupled partial differential equations (PDEs)
- Basic electrochemical reaction (LiC₆ / LiFePO₄ Lithium-ion cell)

$$\begin{array}{ccc} \text{Li}_x \text{C}_6 & & \xrightarrow{\text{discharge}} & \text{C}_6 + x \cdot \text{Li}^+ + x \cdot \text{e}^- \\ \\ \text{Li}_y \text{FePO}_4 + x \cdot e^- + x \cdot \text{Li}^+ & \xrightarrow{\text{discharge}} & \text{Li}_{x+y} \text{FePO}_4 \ . \end{array}$$

Leads to (taking into account ionic and electronic conductivity)

$$i_{1} = -K_{1}^{\text{eff}} \frac{\partial \phi_{1}}{\partial x}$$

$$i_{2} = -K_{2}^{\text{eff}} \frac{\partial \phi_{2}}{\partial x} + \frac{2K_{2}^{\text{eff}}RT}{F} (1 - t_{+}^{0}) \frac{\partial \ln c_{2}}{\partial x}$$

$$i = i_{1} + i_{2}$$

Electrochemical model

Charge transfer and charge balance (Butler-Volmer)

$$\frac{\partial i_2}{\partial x} = j = aFk \left((c_{1,\text{surf}} - c_{1,\text{min}})^{1-\beta} e^{\frac{\alpha F}{RT}(\phi_1 - \phi_2 - E)} - (c_{1,\text{max}} - c_{1,\text{surf}})^{\beta} e^{\frac{(1-\alpha)F}{RT}(\phi_1 - \phi_2 - E)} \right)$$

$$0 = \frac{\partial i_1}{\partial x} + \frac{\partial i_2}{\partial x}$$

Diffusion for solid and liquid (Fick's law)

$$\frac{\partial c_1}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(D_1 r^2 \frac{\partial c_1}{\partial r} \right)$$

$$\frac{\partial (\text{eps}_2 c_2)}{\partial t} = \frac{\partial}{\partial x} \left[\text{eps}_2 D_2^{\text{eff}} \frac{\partial c_2}{\partial x} \right] + (1 - t_+^0) j$$

 Bruggeman relation (porosity and tortuosity of the porous electrode materials)

$$K_1^{\text{eff}} = K_1 \text{eps}_1^{\text{brug}}, \ K_2^{\text{eff}} = K_2 \text{eps}_2^{\text{brug}}, \ D_2^{\text{eff}} = D_2 \text{eps}_2^{\text{brug}}$$

Cell ageing

- Many different parameters effect the same measured variable, such as power or capacity fade
- It is usually not clearly defined which parameter caused ageing of a certain cell at a given usage history without opening the cells and performing sophisticated chemical analysis.
- By applying special chemical and spectroscopic methods (e.g. WDX analysis shown for 0, 30, 3000 cycles - of increasing Fluorine deposition caused by cycling, to determine loss of active material and impedance rise), ageing mechanisms can be postulated and correlation effects can be worked out.

Physics-based (electrochemical) models can be set up or extended

Examples of ageing effects

Ageing effect	Effect	Measurement	Influence factors
Collector corrosion (Cu)	Overpotential, power fade, impedance rise	Resistance, pulse constant	SoC↓↓
Contact loss of active material	Loss of active material, capacity fade	Capacitance	Cycling rate↑ DeltaSoC↑
Decomposition of binder	Loss of lithium, loss of electrode stability	Chemical composition	SoC↑ Temperature↑
Metallic lithium plating and subsequent electrolyte decomposition by metallic lithium	Capacity fade, power fade	Capacitance, pulse constant	Temperature↓, Cycling rate↑, Geometric misfits
Decomposition of electrolyte	Impedance rise, loss of lithium	Resistance, capacitance	Temperature↑ SoC↑, DeltaSoC↑
Changes in porosity due to volume changes, SEI formation and growth	Power fade, impedance rise, overpotentials	Chemical composition, capacitance, resistance, pulse constant	SoC↑, Cycling rate ↑, DeltaSoC↑
Changes in structure, changes in porosity	Capacity fade, power fade	Capacitance, REM, chemical composition	Temperature↑, SoC↑, DeltaSoC↑

Relationships and tolerances (LiFePO₄)

Rate test, pulse test, driving cycles (e.g. NEDC), impedance measurements, ...

Design of experiment

- DeltaSOC (0 to 100%) vs. SOC (0 to 100%)
- Temperature (-20 to +70°C) vs. C-rate (0 to 5)
 - Limitation due to deceleration of chemical processes at low temperatures
- DeltaSOC (0 to 100%) vs. C-rate (0 to 5)
 - Limitation caused by measurement instrumentation → inaccurate cycling (switching), predefined Delta SOC can not be maintained
 - Physics: at 0°C no change of SOC possible

Measurement quantities

- Resistance, capacitance, pulse response
- Chemical composition → post mortem analyses
- Structures via REM (2d images of porous electrodes)

Parameter variations

Manufacturing

- Typical steps in cell production:
 - weighing of cell components
 - Mixing
 - Coating (copper / aluminium foil)
 - Pressing of electrodes
 - Slitting
 - Jelly roll coiling (cathode, anode, separator)
 - Welding of current collectors
 - Dosing of electrolyte
 - Formation
 - Quality control
- Characteristic cell parameter variations (e.g. cell capacity and internal resistance) due to variations of manufacturing steps (process tolerances, unwanted metal particles, water inclusions, geometries,...)
- leads to different behavior regarding ageing often even unknown by the manufacturer

Cell capacity variation (18 Ah nominal)

Variation after cycling (blue) shift in mean increase in standard deviation

Cells after formation process (green) scattering due to cell-to-cell variations

Cell ageing and battery management

Energy management and system integration

- Hybrid architecture
- Lithium-ion battery
- Cascaded control

Battery integration approach

KULI

Simulink®

- Modeling using well-established domain-specific tools (Dymola, MATLAB/Simulink, Flowmaster, Kuli,...)
- Development of thermal operation strategies
- Cooling/heating strategies for battery
 - direct refrigerant cooling
 - coolant loop cooling
- cold start behavior
- predictive strategies

Conclusions

- Modeling of lithium-ion batteries is an active research field
- No cell standard (different materials, potentials, geometries, operation modes, energy and power densities,
 - Models have to be scaleable in order to cover the existing range
- Different models can be used for different statements
 - Polynomial and equivalent-circuit models → energy management, model-based diagnosis, on-board parameter estimation,..
 - Electrochemical models → covering ageing aspects on an electrochemical basis, design support of cells (optimal design of internal cell structures), covering tolerances and manufacturing variations,...
- Ageing effects are not fully understood → strong interaction between electrochemistry, measurement, modeling, simulation, and estimation required.