

Future Propulsion Systems

BRP-POWERTRAIN

Wolfgang Wukisiewitsch

BRP Powertrain

Challenges

Sustainability

Future Propulsion Systems

- Scenarios
- Architecture
- Enablers

Summary

Key messages

BRP Bombardier Recreational Products

BRP Powertrain

Challenges

Sustainability

Future Propulsion Systems

- Scenarios
- Architecture
- Enablers

Summary

Key messages

BRP Market segmentation

A3PLUS Conference 2010 Wolfgang Wukisiewitsch

BRP Powertrain A global company

BRP Powertrain

Challenges

Sustainability

Future Propulsion Systems

- Scenarios
- Architecture
- Enablers

Summary

Key messages

Megatrend Sustainability

Society

Different expectations from different generations

	Values	Organizational Culture	Management Style	Working environment
Baby Boomers (1946 – 63) (45% of active pop.)	Work is serious	Hierarchy Respect authority and norms Take time to make the right decisions	Boomers are manageable and loyal Follow orders	Quality of life
Generation X (1964 – 78) (30% of active pop.)	Work must have a meaning	Careerism Politics Fast	Mentoring Loyalty redefined: commitment to their work/career, not employer	Flexibility for their "sandwich" situation
Generation Y (1979 – 83) (15% of active pop.)	Work is done in teams	Reputation (ethics) of the company Challenges and experimentation Very fast-paced	Guidance Autonomy – free agents Good relationship with supervisor Frequent feedback	Opportunities to socialize at work Work/life balance is a priority
Generation C (1984 – 96) (45% in 10 years)	Technology is key	Stimulation Creativity Instant	Managers who "walk the talk"	Lifestyle and friends above work

Source

Enviroment

Emission Legislation Standard CO/HC/NOx

A3PLUS Conference 2010 Wolfgang Wukisiewitsch

Enviroment

Emission Legislation Standards CO2

A3PLUS Conference 2010 Wolfgang Wukisiewitsch

Economy – Justify Energy Demand

BRP Powertrain

Challenges

Sustainability

Future Propulsion Systems

- Scenarios
- Architecture
- Enablers

Summary

Key messages

Future Propulsion Szenarios

- Ultimate Power to weight
- **Ultimate** Ride to autonomy
- Limited Access to playground
- **Legal** Emission tank to wheel

Efficient Power to weight

- Efficient Ride to autonomy
- **Extended** Access to playground
- Reduced Emission tank to wheel
- Ultimate Power to emissions
- Limited Ride to autonomy
- **Unlimited** Access to playground
- Zero Emission tank to wheel

Internal combustion engine ICE

Ultimate Power Vehicle Technology Direct injection 2- & 4-stroke Charging SC & TC Emission control concepts Intelligent transmissions Variable auxiliaries Light weight materials **Key Issues** Emissions reduction Efficency improvement

- Noise reduction
- Alternative fuels

Technology

Key Issues

Parallel hybrid

Emission control concepts ICE

Intelligent transmissions

Energy storage concepts

Cost of Battery/Power electron.

Weight / Size of Powertrain

Emissions reduction of ICE

Packaging of Powertrain

System Complexity

(quick charge and discharge)

Efficient Power Vehicle

Micro hybrid (start/stop)

Electric

Zero Emission Limited Ride Vehicle

Technology

- Full electric
- Series hybrid (Range extender)
 - Emission control concepts ICE
 - NVH concepts ICE
 - Battery technology concepts (continues charge and discharge)

Key Issues

- Costs of Battery/Power electron.
- Weight / Size of Battery
- Packaging of ICE / generator
- NVH reduction of ICE
- Limited Autonomy

Future Powertrain Architecture

Mechatronic Powertrain Advanced Architecture

Powertrain development process has to cover a significant higher complexity by continuously increasing demands of development time and cost reduction

Mechatronic Powertrain Enabler – Drive system NVH

Interior noise level impression of ICE-REX compared to existing ICE-vehicle is limiting the REX operating strategy

Mechatronic Powertrain Enabler - Battery system

Existing battery concept are optimized towards energy density, for future propulsion systems we would need higher power density as well, to optimize the operating strategy and increase the over all efficiency.

Mechatronic Powertrain Enabler - Model based simulation

Model based simulation / tools are a key success factor for advanced power train function design in terms of time to market and development cost

Mechatronic Powertrain Enabler – Model based testing

Model based testing / tools are a key success factor for advanced power train function test/validation in terms of time to market and development cost

BRP Powertrain

Challenges

Sustainability

Future Propulsion Systems

- Scenarios
- Architecture
- Enablers

SummaryKey messages

Summary Key Issues

Situation

- Efficiency increase, emission reduction to "Zero emission" and renewable energy sources will drive the development of future propulsion systems -> ICE, Hybrid and e.
- Many countries worldwide have strategies announced to substitute crude oil by alternative fuels or renewable energy sources -> energy shift.
- Mechatronic units mechanical, electric/electronic and software engineering to design advanced power train architectures and functions.

Challenges

- Many technical options are available to work on efficiency increase and emissions reduction, it will not be one solution / technology for the world -> investment justification
- The Powertrain development process has to cover a significant higher complexity by continuously increasing demands of development time and cost reduction -> time to market
- The war of talents for the future will increase significantly.

Messages

- The combustion engine will continue to dominate the mobility in the next 20 years.
- The mechatronic architecture will allow us to define solutions with the necessary flexibility for the future.
- The e mobility hype will change into a sustainable mobility orientation for the future.

Key Issues

#1: Efficiency increase

#2: Emission reduction

#3: Battery Power density

#4: Investment justification

OUR PRIORITY: INNOVATION

www.brp.com

