

Reliability & Safety of Lithium Battery Packs

<u>P. Gollob, Project Manager Battery Systems</u>
Dr. U. Wiedemann, Product Manager Battery Systems
B. Kaltenegger, Analysis Engineer
Dr. K. Denkmayr, Manager Reliability Engineering
Dr. V. Hennige, Program Manager Battery Systems
Dr. H. Hick, Manager Mech. Development & Validation
T. Li, Development Engineer Hybrid
R. Schneider, Lead Engineer Hybrid Systems
F. Zieher, Head of Simulation & Mech. Development

FIVE ELEMENTS OF THE POWERTRAIN

OVERVIEW ABOUT AVL'S BATTERY ACTIVITIES

AVL Battery Pack Development Market Overview

AVL has established this trusted partnership with the automotive OEMs

AVL is now focused on the development of strategic alliances with component suppliers who have unique product offerings suitable for automotive market introduction

AUDI A1 E-TRON with AVL RANGE EXTENDER

5

BATTERY RELIABILITY PROCESS

A3PS Conference 2010 / Vienna - AVL BATTERY SYSTEM DEVELOPMENT - 19.11.2010

TYPICAL SITUATION

High innovation pressure by legislation and competition Reliability problems diminish profit and market reputation For new systems / applications no test programs are available Test program is not capable to demonstrate reliability targets Acceleration factors of tests are estimated globally Certain modes of operation and applications are not tested at all Optimization of the test time and resources is required

→ Load Matrix

LOAD MATRIX PROCESS

System Analysis	Component oriented analysis w.r.t. damaging operating conditions, risk based prioritisation of failure modes
Applications and Targets	Identification of usage space, definition of reference duty cycles and reliability targets
Test Program and Load Analysis	Determination of acceleration factors, damage modeling, adaptation of test program
Evaluation and Optimization	Reliability and durability analysis of test program, timing & costs, warranty risk reduction

LOAD MATRIX SYSTEM ANALYSIS SELECTION OF RELEVANT COMPONENTS

Vehicle		Hybrid or Electric Vehicle				
	,					
System		Battery System				
	·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Subsystem		Battery module	Cooling system (air or liquid)	Electronic components	Battery housing	Connectors + wires
		Cell	Fan	Battery control board	Housing	High voltage wires
		Cell sensors	Heat exchanger	System sensors	Overpressure valve	HV-connector to vehicle
		Cell connector	Pipe/ channels/ manifolds	Insulation monitoring	Pressure balance device	Module connectors (busbar)
Components		Module housing	Sensors	Fuse(s)	Electrical insulation	Service disconnect
		Module sensors	Gaskets	Interlock system	Thermal insulation	Main contactor and precharge relay
		Gaskets			Gaskets	Signal wires
						Signal- connectors to vehicle

SELECTED KEY FAILURE MODES OF LITHIUM ION CELLS

	FAILURE MODE	CAUSE OF FAILURE	INFLUENCE FACTORS	
D1	Increase of internal resistance Reduced capacity	Degradation of SEI at negative electrode	SOC DSOC Temperature Power Vibration / shock	High @ low SOC and discharging Medium @ other conditions High High Medium Medium
D2	Increased self discharge Hard short circuit and subsequent cell venting	Lithium plating at negative electrode	SOC DSOC Temperature Power Vibration / shock	High @ high SOC and charging at low T Low @ other conditions Low High Medium Low
D3	Increased resistance Cell swelling and subsequent ell venting	Decomposition of electrolyte	SOC DSOC Temperature Power Vibration / shock	High @ high SOC and charging Medium @ other conditions Medium High Low Low
D4	Increased resistance and reduced power Reduced capacity	Crack of conducting paths	SOC DSOC Temperature Power Vibration / shock	Low Medium Low Low High

DEFINITION OF THE OPERATING DIMENSIONS

LOAD MATRIX PROCESS

System Analysis	Component oriented analysis w.r.t. damaging operating conditions, risk based prioritisation of failure modes
Applications and Targets	Identification of usage space, definition of reference duty cycles and reliability targets
Test Program and Load Analysis	Determination of acceleration factors, damage modeling, adaptation of test program
Evaluation and Optimization	Reliability and durability analysis of test program, timing & costs, warranty risk reduction

USAGE SPACE ANALYSIS IDENTIFICATION OF CRITICAL DRIVING CONDITIONS

Statistical analysis of relevant damaging parameters and variation of in-field use conditions

- Southern California ≠
 - City Driving ≠
 - Sporty Driver ≠
 - Frequent Use ≠

- Northern Europe
- Mixed Driving Cycle
- ≠ Economic Driver
 - Occasional Use

Identification of Key Customers for system validation

RELIABILITY TARGET ALLOCATION (RTA)

Our mission is a reliability target of 0 ppm.

This can not be demonstrated statistically.

→ Adequate targets for validation have to be determined

The target determines the validation effort

1. Optimize adequate system target regarding

- legal requirements and warranty strategy
- planned volume production incl. scale-up
- available time to test
- concentration of failure modes (Pareto principle)

2. Derive component- and subsystem specific targets consider development, production and economic risks

- 3. Adapt component targets iteratively throughout development process
 - take the feasibility of demonstration at certain time point into account
 - targets are stated separately for major failure modes

4. Evaluate resulting improvement using Load Matrix update

Bettery system RF target = 0.1

LOAD MATRIX PROCESS

System Analysis	Component oriented analysis w.r.t. damaging operating conditions, risk based prioritisation of failure modes
Applications and Targets	Identification of usage space, definition of reference duty cycles and reliability targets
Test Program and Load Analysis	Determination of acceleration factors, damage modeling, adaptation of test program
Test Program and Load Analysis	damage modeling,

A key element to reach the defined targets is the Validation Plan Design

A) General Validation Plan Design Issues

- Overall number of testing hours for reliability demonstration for the different applications
- Balancing between component, system and vehicle testing
- Balancing between Generation 1, Generation 2 and Production Validation phase

· · · · ·

B) Detailed Analysis

- Test cycle analysis
- Length (number of hours or kilometers) of tests
- Failure modes not validated due to not optimized test cycles
- Failure modes only validated in the vehicles

• • • •

C) Validation Timing Analysis

- Validation status at the end of the specific phases (Gen.1, Gen.2 and PV phase)
- Validation beyond SOP

BATTERY TEMPERATURE WITHIN THE VEHICLE

CALENDARIC AGING FACTOR & DISTRIBUTION OF VEHICLES IN INDIA

Number of vehicles and aging factor per region:

Region	No. of Vehicles	Aging Factor
Bangalore Urban	228570	1,1495
Mumbai City	354229	1,6933
New Delhi	1222706	1,5723
District 107		

Aging Factor

Aging-distribution:

Out of supplier data or lifetime test program a relation between calendaric aging and temperature is established.

Aging Factor = 1 corresponds to a lifetime of the battery determined at $25 \ ^{\circ}C$

AVL DOE TEST MATRIX FOR CELLS

Temperature Aging Condition	-15 °C	30 °C	70 °C
Storage tests	5 cells (SOC 10 %)	2 cells (SOC 10 %)	5 cells (SOC 10 %)
(no cycling)	2 cells (SOC 50 %)	2 cells (SOC 50 %)	2 cells (SOC 50 %)
	5 cells (SOC 90 %)	2 cells (SOC 90 %)	5 cells (SOC 90 %)
Constant current cycling	5 cells (SOC 20 %, DSOC 10 %)	3 cells (SOC 20 %, DSOC 10 %)	5 cells (SOC 20 %, DSOC 10 %)
	5 cells SOC 50 %, DSOC 80 %)	3 cells (SOC 50 %, DSOC 80 %)	5 cells (SOC 50 %, DSOC 80 %)
	5 cells (SOC 80 %, DSOC 10 %)	3 cells (SOC 80 %, DSOC 10 %)	5 cells (SOC 80 %, DSOC 10 %)

Boundary test matrix is shown – intermediate matrix points are required. Number of cells at each matrix point depends on size of planned annual vehicle sales.

ENDURANCE LIFE PREDICTION / ACCELERATION FACTORS ONGOING R&D PROGRAM

LOAD MATRIX PROCESS

Evalu	ation and Optimization	adaptation of test program Reliability and durability analysis of test program, timing & costs, warranty risk reduction
Test Pr	ogram and Load Analysis	Determination of acceleration factors, damage modeling,
Ар	olications and Targets	Identification of usage space, definition of reference duty cycles and reliability targets
	System Analysis	Component oriented analysis w.r.t. damaging operating conditions, risk based prioritisation of failure modes

LOAD MATRIX: OPTIMIZED TESTING AND VALIDATION

0,100

runs are completed without failure

LOAD MATRIX RESULTS

Demonstrable reliability, durability coverage

Characterisation of tests

Optimised test procedures for maximum acceleration

Complete, balanced test program for

- optimised duration, number of samples to test under given budgetary situation
- optimised balance between rig, dyno, vehicle and supplier tests
- optimised test sequence

Assessment check list for intermediate and final parts assessment

Test acceleration factors

Track analysis / customer usage profile analysis

Overview of critical and validation-relevant components and failure modes

Overall mileage accumulated for critical components / failure modes

Durability / reliability / warranty risk at SOP or other important milestones

AVL LOAD MATRIX SUMMARY

Analysis and optimization of product validation regarding

- Timing vs. product release
- Reliability demonstration and lifetime coverage
- Validation costs and warranty risks

Integration of internal and external contributions on a common platform

- Validation contributions of all departments and suppliers
- Economic, market, legal and sales requirements

Simple implementation into existing development process and tools

Generic methodology (Applicable to powertrain, hybrid, fuel cell, ...)

Technical risk management and tracking

Demonstration of improved reliability reduces risk of failure and hence warranty costs.