

Thermodynamic Potential and Limits

Challenges and risks for IC engines

- Introduction
- Boundary conditions
- Challenges today and tomorrow
 - Efficiency
 - Emission
 - Specific Power
- Additional Chances for the future
- Summary

Today: More than 1000 million IC engines

Driving more than 99 % of passenger cars

IC engine is one of the most successful inventions

Production >70 mio. per year

But:

The biggest challenge for ICE is its success

Thermodynamic boundary conditions

Limit: Efficiency of the ideal engine

Efficiency of the ideal engine

- Constant volumeconstant pressure combustion
- Peak pressure limitation

Efficiency of real engines

Engine Categories - Comparison

Efficiency increase by shift of operation point

Example Diesel vs. Gasoline:

2.0 dm³ engine in equal vehicle

Efficiency increase by de-throttling and load shift

Example: MPI Gasoline engine ($\lambda = 1$)

Lean Operation

Fully variable valve train

Cylinder deactivation

Downsizing (Gasoline DI TC, Diesel 2stage TC)

Electrification/ Hybrid

Effective efficiency of passenger car drivetrains

Further potential for efficiency improvement

- Electrification / Hybridization
 - Start/Stop
 - Shift of operating point
 - Energy recovery
 - Electric drive in low load/speed
- Thermal management for improved warm up
- Waste heat recovery

Increase of system efficiency

Waste heat recovery – Concepts

Lit.: SAE 930880, 1993 (Toyota)

Lit.: SAE 790646, 1979

Thermoelectric generator / source: BMW

Increase of system efficiency

Waste heat recovery – Potential for trucks

Source: Gstrein, FPT (Iveco)

Thermodynamic Potential and Limits

Challenges and risks for IC engines

- Introduction
- Boundary conditions
- Challenges today and tomorrow
 - Efficiency
 - Emission
 - Specific Power
- Chances for the future
- Summary

Emission – standards

Example: Passenger car diesel engines

Emission Legislation

SULEV HC Emission and Immission

Thermodynamic Potential and Limits

Challenges and risks for IC engines

- Introduction
- Boundary conditions
- Challenges today and tomorrow
 - Efficiency
 - Emission
 - Specific Power
- Chances for the future
- Summary

BMEP of NA and Supercharged Engines

Specific power – potential

Gasoline

Speed

- > Exclusive applications
- > Excellent transient behaviour
- > Sport- and racing vehicles
- **➤** High effort

Specific power 140 kW/l in series (motorcycle)

Turbocharging

- > Wide application
- > Synergy with DI
- > Downsizing possible
- > Cost efficient

Specific power >700 kW/l Durability 3 laps (qualifying)

Specific power – potential

Diesel

- High speed concept not possible due to combustion speed
- Increase of supercharging possible also as two stage TC no thermodynamic limit obvious, mechanic and thermal limit
- Example for complex and effective turbocharging: power boats and military applications

Thermodynamic Potential and Limits

Challenges and risks for IC engines

- Introduction
- Boundary conditions
- Challenges today and tomorrow
 - Efficiency
 - Emission
 - Specific Power
- Additional Chances for the future
- Summary

Alternative fuels

Assessment

	Use of ex	astructure Application	on of Ecutoricest	ouse Louisonnent	. Aemans
Bio Diesel	++	+ (PM-Filter)	+ (-50%)	0	20% blending expected until 2020
Ethanol	++	+	+	0	Blending, Sugar Cane+
Natural Gas	-	+ (knock resist.)	+ (-25%)	+ (D) 0 (G)	Fossil Fuel; Operation Range
Auto Gas (Propane)	0	0/-	+ (-10%)	+ (D) 0 (G)	Fossil Fuel
BTL (Biomass to Liquid)	-	++	0/+	(+)	Energy demand for production
Biogas		+	++	0	similar to natural gas
Vegetable Oil	-	•	+	•	Limited Availability
Hydrogen		+	++ (renewable)	++	Energy Carrier !; ICE + FC
Electric Energy	-		++ (renewable)	++	Based on renewable energy

> Increasing share and variety, but no single "patent" solution

Concept Vehicle TU Graz/HyCentA

Multi Fuel

Multivalent with Methane, Biogas and Hydrogen in one Fuel System and

Gasoline

Summary

Conclusions

- Essential efficiency improvement by advanced combustion concepts in combination with load shift technologies (downsizing) possible
- Technology variety of SI engines continued (TC, MPI/DI, cyl. deactivation, VVT, DI stratified), key technologies will be turbocharging+DI
- Electrification of ICE (mainly Mild Hybrid) increasing
- Remarkable potential of Energy management (warm up, use of waste energy) and friction reduction
- Important challenge is reduction of CO₂ fleet-emission, EU target of 95 g/km (2020) seems feasible (and most effective) with "reasonable"(cost-efficient) ICE
- IC engine with ",zero impact" toxic emissions possible (λ =1 gasoline)
- ICE gives excellent base for Alternative Fuels
- ICE for > 20 years dominating propulsion system

Thank you for your attention

contact: eichlseder@ivt.tugraz.at

