Integration of a Fuel Cell Range Extender in Warehouse Logistic Vehicles

Dr. Ewald Wahlmüller

Fronius International GmbH Research and Development Günter Fronius Straße 4600 Wels-Thalheim Austria

A3PS Conference 2010, Alternative Propulsion Systems and Energy Carriers – Vehicle Integration and System Optimization, Tech Gate Vienna, 18th and 19th November 2010

Content

- The Fronius Company
- The Fronius Energy Cell
- The HyLOG Project / Status and Results Demonstration
- Future of Warehouse Logistics
 - Energy Infrastructure Perspective
 - Warehouse Vehicle Requirements
 - Load Cycle
 - Standards System Safety
- The E-LOG-Bio Fleet Project
- Summary

Fronius Company

Division Battery Charging Systems

Division Welding Technology

Division Solar Electronics

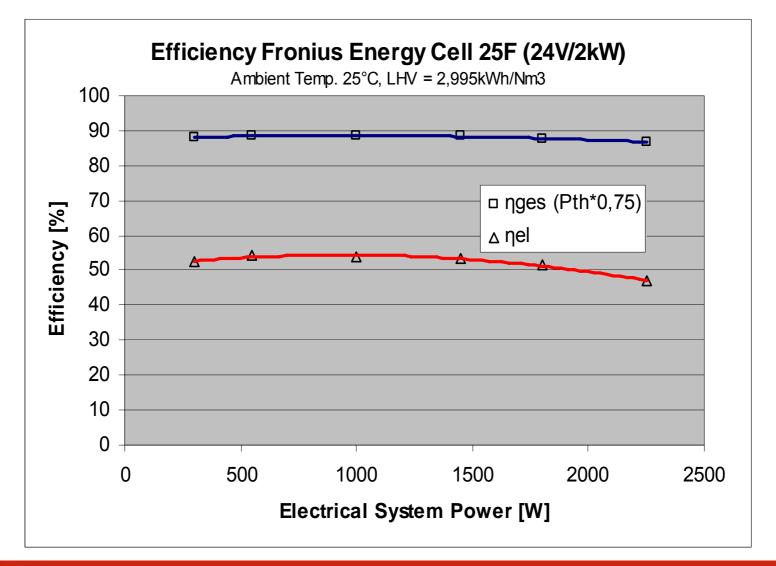
A closer look at the Fronius Group

A REAL OF	2009	2008
Employees worldwide	2677	2500
Employees R&D	358	<mark>30</mark> 9
Group turnover (million €)	329	370
Investment quota	14.9 %	8.6 %
Export quota	93 %	<mark>90 %</mark>
Active patents	649	585

Fronius Energy Cell

Available for Projects

	·			
Power	4 kW	2 kW		1 kW
Voltage	48VDC		2	4VDC
IP Protection	IP20 (upgradable to IP54)			
Compliance				
Certification	EN62282-5-1:2007			
Fuel Supply	Standard Compressed Hydrogen 30		- 700 bar	
		Hydrogen		
		Electr		
Applications		DC/AC Power Generator		
		Mobile Ap	plications	


- PEM fuel cell power generator
- High overall efficiency
- Silent operation
- Perfect safety strategy
- Easy to use and service, user-friendly
- Complete remote system monitoring

Energy Efficiency Fronius Energy Cell

The HyLOG Project

Status Demonstration / Results

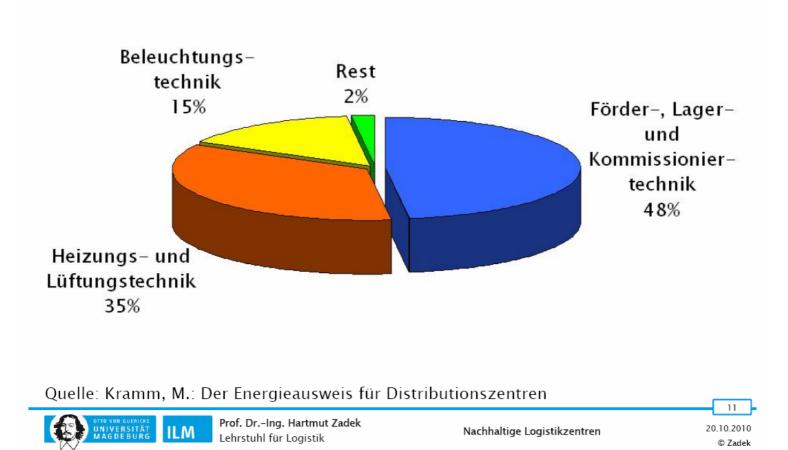
- Since May 2009: 5 days/week 2-shift operation
- 4 5 shifts / cartridge exchange
- Key advantages
 - Fast refuelling increases system flexibility and availability
 - Increased productivity through constant power, reduced maintenance, reduced space demand
 - Energy management capability
 - No emissions
- Improvement potentials / critical aspects
 - Minimum vehicle fleet size for economic operation required
 - Competitive price for hydrogen as an energy carrier
 - Replacement of cartridge by indoor / onboard refuelling
 - System cost reduction through volume manufacturing

Future of Warehouse Logistics

Schenker Facility Sofia, Bulgaria (Photo courtesy of Schenker & CO AG)

Gazeley Park Blue Planet Chatterly Valley (Photo courtesy of Gazeley UK Ltd.)

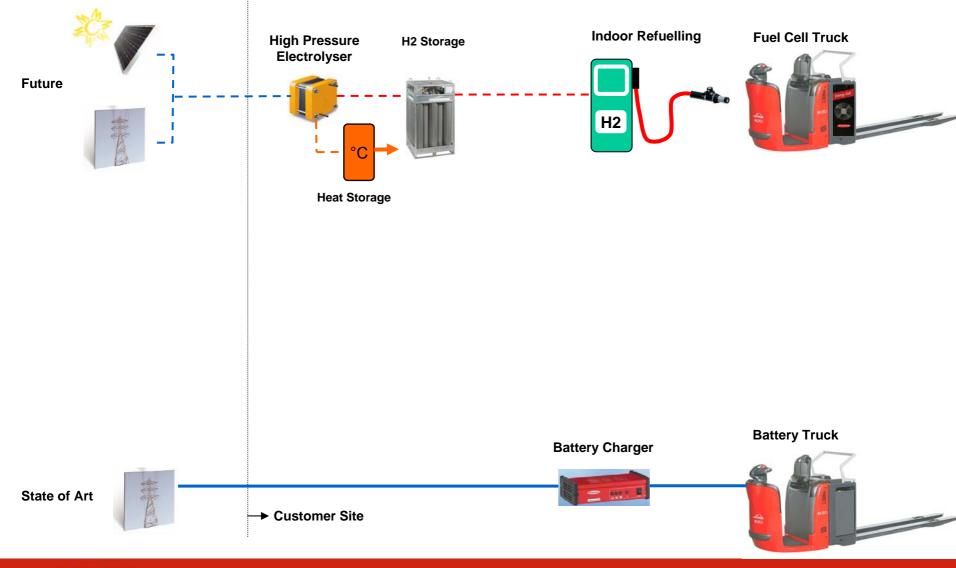
Fronius Facility Sattledt, Austria



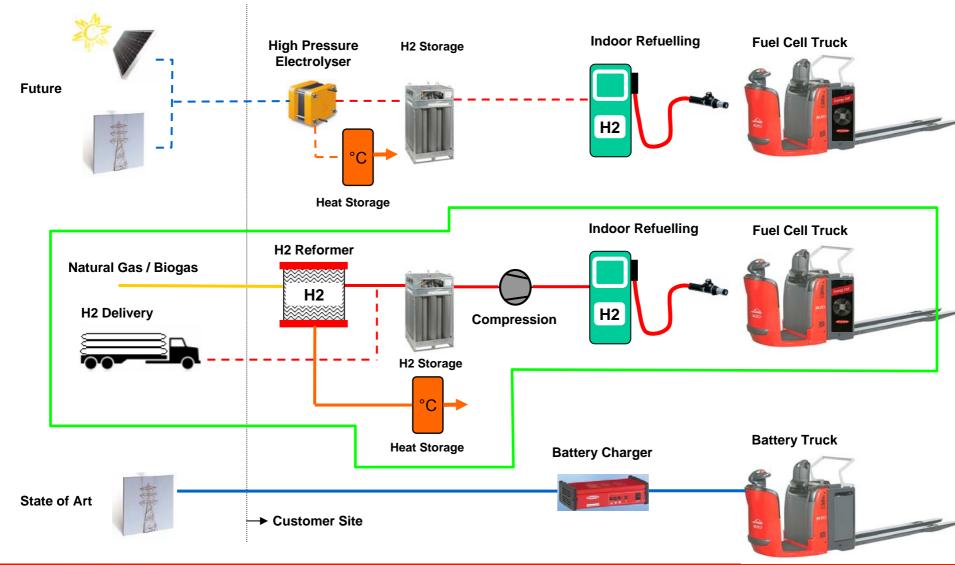
Kühne+Nagel Hub Chaponnay, France (Photo courtesy of Kühne+Nagel Int. AG)

Energy Costs in Warehouse Logistics

Energiekostenaufteilung eines Logistikzentrums



Energy Infrastructure Perspective

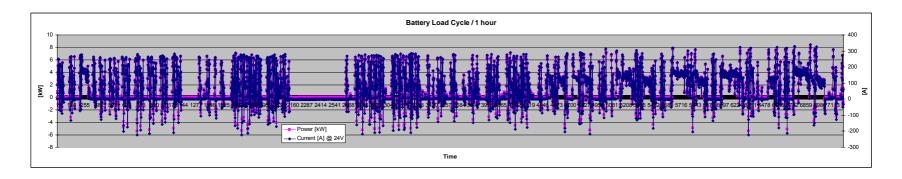


Energy Infrastructure Perspective

Energy Infrastructure Perspective

Warehouse Vehicle Requirements

- Onboard energy
- Driving range (net)
- Refuelling time (indoor / onboard)
- Temperature range
- Water / dust protection
- Extreme vibration and shock load


5,2 – 9,6 kWh >4 hours <3 min -10 to 70°C IP53

Load Cycle

Average power drive cycle:0,4 toAverage power shift / recharging cycle:0,2 to

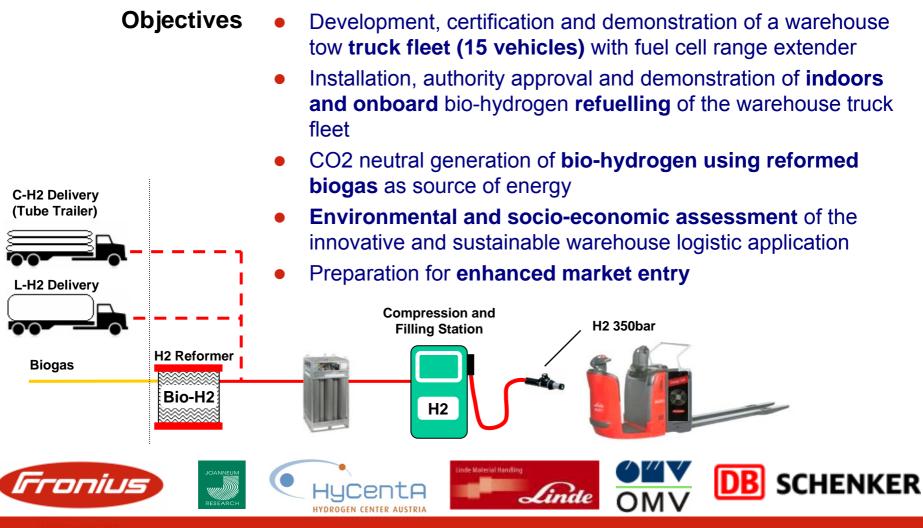
0,4 to 3,1 kW 0,2 to 1,9 kW

Max. Current

-270 to 550A @ 19V (~10,5 kW)

Standards System Safety

• New Machinery Directive 2006/42/EC, active since 29 Dec 2009


- System safety functions (pneumatic, electronic, hydraulic, mechanical functions on sub- and total system level) require qualitative AND quantitative reliability assessment
- Assessment according to
 - EN62282-5-1:2007 Fuell cell technologies Part 5-1: Portable fuel cell power systems - Safety
 - EN ISO 13849-1 Safety of machinery (Replaced: EN 954-1 Safety of machinery, Safety related parts of control systems)
 - EN 61508 Functional safety of E/E/PE electronic safety-related systems
- Challenges:
 - Low availability of safety related data (SFF, PFH values) of components of the safety function causes demanding and costly engineering solutions
 - High documentation effort
- Standards gas vehicle refuelling (incl. indoor)
 - ÖVGW G97 NGV filling stations Design, production, installation and operation
 - VdTÜV MB514 / 04.2009: Compressed gases, Requirements for hydrogen fueling stations

E-LOG-Bio-Fleet

This project is selected for funding by the Austrian Climate and Energy Fund within the program "Technologische Leuchttürme der Elektromobilität"

Summary

- The HyLOG project demonstrates a safe and zero emission solution for warehouse logistics
- Key benefits of fuel cells for warhouse logistics are fast refuelling, constant performance, reduced maintenance and less space demand @ zero emission
- A Fuel Cell Range Extender enables both high peak current capability and drive cycle efficiency
- Compliance with EU safety standards is evident but costly
- The E-LOG-Bio Fleet project will further enhance market entry of the innovative technology

POWERING YOUR FUTURE

