

...from the motorcycle garage to a group of companies...

	History #1	
1953	Start of industrial production of motorcycles: Company name KTM "Kronreif, Trunkenpolz, Mattighofen"	
1955	First engagement in road racing	
1964	KTM factory team participate in the Int. Six Days Enduro for the first time	
	Start of the bicycle production	
1970	Start of the in-hous production of engines	
1974	Gennadij Moiseev wins first MX World Championship	
	KTM produces 42 different models	
1984	Heinz Kinigadner wins 250-MX Word Championship	
	Foundation of KTM-Kühler (radiator)	
1991	Bankruptcy – the lines of business motorcycles,	
	bicycles, radiator and tool manufacturing	
	are split up into independent companies	

...after bankruptcy strong development up to a worldwide operating group...

	History #2	
1992	Restart as KTM-Motorradholding GmbH	
1994	First Word Championship title of the new era: Shane King, MX	
2000	KTM dominates off-road racing with 6 of 8 possible World Championship titles	\$ 5
2001	Rally Dakar, first of nine victories in a row	0.0
2003	Re-start of the road racing activities in the GP 125 class Launch of the 950 Adventure – KTM's first twin cylinder bike	
2004	First victory in the road racing GP: Casey Stoner, GP 125, Sepang/Malaysia	
	Launch of the 990 Super Duke, the first KTM street motorcycle with a V2 engine	
2008	Launch of KTM's first Superbike - 1190 RC8 Serial production of KTM's supersports car X-Bow	
2009	Presentation of the new 125 cc street models in cooperation with Bajaj Auto Ltd.	

Philosophy

ZEMC – ZeroEmissionMotorCycle

Projectstart in November 2007 in course of A3 programm (Austrian Advanced Automotive Technology)

>> Projectpartner

A Company of Austrian Research Centers

FREERIDEEDRIVETRAIN

- >> High performing and intelligent E-drive
 - » Energy storage with low weight
 - » Intelligent closed loop control
 - » Smart energy management
 - » Powersport without Emissions

FREERIDEEXPECTATIONS

- Reaching of new target groups
 - Indoor events
 - » Easy handling for beginners
 - >> Urban mobility
- >>> Reduction of emissions
- >> New oportunities to perform endurosport

FREERIDECHALLANGE

- >>> Development of weight and power optimized powertrain
- >>> Design of an intelligent controll tequnique
- >>> Sustain real characteristics of motorcycle
- >>> Establish a userfriendly motorcycle for capturing a new market
- >>> Clever matched measures of safety ISO DIS 26262 respected
- >> Homologation
- >> Commercial relevance

FREERIDEOVERVIEW

» E/E COMPONENTS

FREERIDEOVERVIEW

- >> E/E COMPONENTS in detail
 - >>> ECU
 - >> E-MOTOR
 - >> TRACTION BATTERY
 - >> CONNECTORS
 - >> OPTIMISATION OF THERMAL BEHAVIOUR

FREERIDEEMOTOR

Synchronous motor:

- >> Rated power: 7,4 kW
- >>> Range of voltage: 200 300 VDC
- Optimized efficiency
 - » Reduction of losses in the overload range due to increased amount of copper

FREERIDETRACTIONBATTERY

» DESIGN

FREERIDETRACTIONBATTERYCELL

» ENERGY ANALYSIS

converted CAPACITY [% of max]

converted ENERGY [% of max]

FREERIDECONNECTORS

FREERIDECONNECTORS

- Special seal level requirements to Connectors:
 - >> Tightness if IP67 when unplugged
 - » Tightness of the single pins
 - » Sealing flange between the motor and connector housing
- >>> Reliable combined power and signal transmission, despite
 - » Frequent mating cycles
 - » Moisture / Contamination
 - » Vibrations / mechanical stress
 - » Interference of the power transmission to the signal line
 - » Hot-plug capability (disconnect under load)
- Compact design
- Conform to relevant standards

FREERIDEOPTIMIZATIONOFTHERMALBEHAVIOR

Motivation:

- Avoid high temperatures in the engine BAY
 - » Possible permanent damage to the magnets
 - » Temporary loss of torque
 - » Temporary worsening of efficiency
 - » Damage to the insulation on the winding
- >> Avoid high temperatures at the power electronics
 - » Destruction of electronic components
 - » Temporary worsening of efficiency
 - » Drift of measurante influences control

Solutions:

- » Improve heat dissipation in the housing
- » Reduction of temperature losses

THANK YOU FOR YOUR ATTENTION

