Fuel Cell Components and Material Development

V. Hacker, E. Wallnöfer, M. Thaler, W. Baumgartner, S. Fraser, G. Rabenstein, M. Pawlak
CD-Labor für Brennstoffzellensysteme
Institut für Chemische Technologie anorganischer Stoffe
Technische Universität Graz
13.12.2007 TechGate Vienna

Content

- Development and characterisation of innovative materials for HT-PEM
- Investigation of degradation of fuel cell components
- FC modeling software with real time functionality for fuel cell component development
- Production of hydrogen by reduction/oxidation of metal oxides

Development and characterisation of innovative materials for HT-PEM

- Development of innovative materials for electrodes and electrolytes
- Lowering Pt-loading in electrode
- Development of a new method for production of electrodes based on nanofibres

Investigation of degradation of fuel cell components

- Membrane degradation at OCV operation
 - State of the art
 - OCV Tests at standard conditions
 - OCV Tests at low temperature
 - OCV Tests at low humidification
- Electrode degradation at OCV and low current densities
 - Effect of high potentials at the cathode outlet at low current densities
 - Current densities / electrochemical potentials at dead end operation

Investigation of degradation of fuel cell components

- In-situ membrane degradation tests under OCV conditions
- Five fuel cells are tested simultaneously
- Duration of OCV tests: 33 days (800 h)
Performance Loss

- In-situ membrane degradation tests under OCV conditions
- Five fuel cells are tested simultaneously
- Duration of OCV tests: 33 days (800 h)

Change in membrane resistance

- Investigation of degradation of fuel cell components

Hydrogen Diffusion

- In-situ membrane degradation tests under OCV conditions
- Five fuel cells are tested simultaneously
- Duration of OCV tests: 33 days (800 h)

Fluoride Emission Rate

- Investigation of degradation of fuel cell components

Electrode degradation at OCV and low current densities

- Effect of high potentials at the cathode outlet at low current densities / critical Potential
- Current densities / electrochemical potentials at dead end operation

Segmented Cell
FC modeling software with real time functionality for fuel cell component development
- Development and integration of FC models with RT capability into GenFC
- GenFC: Generic Fuel Cell Modeling Environment (EC project)
- Tasks:
 - Development of FC models with RT capability (PEMFC & SOFC)
 - Interface GenFC/LabVIEW
 - Integration into LabVIEW
 - Visualization with Application Terminal
- Available online in autumn 2008
 www.genfc.org

Production of hydrogen by reduction/oxidation of metal oxides
- Renewable energy carriers
- Cyclic process at elevated temperatures
- Degradation of the contact mass due to sintering
- Improving lifetime by the addition of foreign, structure stabilizing metals

Production of hydrogen by reduction/oxidation of metal oxides
- Renewable energy carriers
- Cyclic process at elevated temperatures
- Degradation of the contact mass due to sintering
- Improving lifetime by the addition of foreign, structure stabilizing metals
- Stability of 500 cycles achieved

Contact
Viktor HACKER, Univ.-Doz. Dipl.-Ing. Dr.techn.
Labor für Brennstoffzellensysteme
Technische Universität Graz
Anschrift: Steyrergasse 21
8010 Graz
Tel: +43-316 873 8781
Fax: +43-316 873 8782
web: www.fuelcells.tugraz.at
Email: viktor.hacker@tugraz.at

Thank you for your attention!